Experimental assessment of a greenhouse with and without PCM thermal storage energy and prediction their thermal behavior using machine learning algorithms

被引:14
|
作者
Badji, A. [1 ,2 ]
Benseddik, A. [2 ]
Bensaha, H. [2 ]
Boukhelifa, A. [1 ]
Bouhoun, S. [2 ]
Nettari, Ch. [2 ,3 ]
Kherrafi, M. A. [2 ,4 ]
Lalmi, D. [5 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Genie Elect, Lab Instrumentat, BP 32, Bab Ezzouar 16111, Alger, Algeria
[2] CDER, Ctr Dev Energies Renouvelables, Unite Rech Appliquee Energies Renouvelables, URAER, Ghardaia 47133, Algeria
[3] Kasdi Merbah Univ, Lab New & Renewable Energies Dev Arid Zones LENREZ, Ouargla 30000, Algeria
[4] Abou Bekr Belkaid Univ, Fac Technol, Dept Mech Engn, Appl Energy & Thermal Lab ETAP, BP 119, Tilimsen 13000, Algeria
[5] Univ Ghardaia, Res Lab Mat Energy Syst Technol & Environm MESTEL, Rue Aeroport Noumerate, Ghardaia 47000, Algeria
关键词
PCM; Energy storage; Greenhouse; Temperature; Machine learning; PHASE-CHANGE MATERIALS; HEAT-STORAGE; PERFORMANCE; SYSTEM; TEMPERATURE; SELECTION; MODEL;
D O I
10.1016/j.est.2023.108133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This research paper focuses on the design, fabrication, and experimental investigation of a thermal energy storage unit utilizing phase change materials (PCMs) for greenhouses. The study analyzes the performance of PCM heat energy storage systems and uses a machine learning algorithm to forecast greenhouse air temperature. The experimental greenhouse with PCM showed a notable increase in ambient temperature (1-8 degrees C) after midnight compared to conventional greenhouses. The paper provides strategies for implementing PCMs and outlines an operation strategy for achieving near-zero energy consumption in solar greenhouses during winter. The ANN algorithm demonstrated promising results for predicting internal greenhouse parameters. Overall, this study contributes to the advancement of thermal energy storage systems and their potential applications in sustainable agriculture.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Thermal Prediction for Efficient Energy Management of Clouds Using Machine Learning
    Ilager, Shashikant
    Ramamohanarao, Kotagiri
    Buyya, Rajkumar
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (05) : 1044 - 1056
  • [32] Experimental investigation of an indirect solar dryer with PCM-integrated solar collector as a thermal energy storage medium
    Bareen, Abdullah
    Dash, Soumya
    Kalita, Paragmoni
    Dash, Kshirod Kumar
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 31 (12) : 18209 - 18225
  • [33] Modeling and Experimental Validation of the Thermal Behavior of PCM using DSC Input Data
    Pop, Octavian G.
    Iuga, Cristina A.
    Tutunaru, Lucian Fechete
    Balan, Mugur C.
    3RD JOINT INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND SMART MATERIALS (ICEESM-2018) AND INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY AND NANOMATERIALS IN ENERGY (ICNNE-2018), 2018, 2004
  • [34] Machine Learning (ML) Based Thermal Management for Cooling of Electronics Chips by Utilizing Thermal Energy Storage (TES) in Packaging That Leverages Phase Change Materials (PCM)
    Chuttar, Aditya
    Banerjee, Debjyoti
    ELECTRONICS, 2021, 10 (22)
  • [35] Predicting Occupant Behavior in Office Buildings Based on Thermal Comfort Variables Using Machine Learning
    Aravena, Gaston Arias
    Espinosa, Fredy Troncoso
    Soto-Munoz, Jaime
    Kelly, Maureen Trebilcock
    ACE-ARCHITECTURE CITY AND ENVIRONMENT, 2023, 18 (53):
  • [36] PCM thermal energy storage in solar heating of ventilation air-Experimental and numerical investigations
    Stritih, Uros
    Charvat, Pavel
    Kozelj, Rok
    Klimes, Lubomir
    Osterman, Eneja
    Ostry, Milan
    Butala, Vincenc
    SUSTAINABLE CITIES AND SOCIETY, 2018, 37 : 104 - 115
  • [37] Experimental study of enhanced PCM exchangers applied in a thermal energy storage system for personal cooling
    Qiao, Yiyuan
    Du, Yilin
    Muehlbauer, Jan
    Hwang, Yunho
    Radermacher, Reinhard
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2019, 102 : 22 - 34
  • [38] Experimental Study on Two PCM Macro-Encapsulation Designs in a Thermal Energy Storage Tank
    Verez, David
    Borri, Emiliano
    Crespo, Alicia
    Mselle, Boniface Dominick
    de Gracia, Alvaro
    Zsembinszki, Gabriel
    Cabeza, Luisa F.
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [39] Exact solution of thermal energy storage system using PCM flat slabs configuration
    Bechiri, Mohammed
    Mansouri, Kacem
    ENERGY CONVERSION AND MANAGEMENT, 2013, 76 : 588 - 598
  • [40] Assessment and prediction of index based agricultural drought vulnerability using machine learning algorithms
    Abdulla-Al Kafy
    Bakshi, Arpita
    Saha, Milan
    Al Faisal, Abdullah
    Almulhim, Abdulaziz I.
    Rahaman, Zullyadini A.
    Mohammad, Pir
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 867