Experimental assessment of a greenhouse with and without PCM thermal storage energy and prediction their thermal behavior using machine learning algorithms

被引:14
|
作者
Badji, A. [1 ,2 ]
Benseddik, A. [2 ]
Bensaha, H. [2 ]
Boukhelifa, A. [1 ]
Bouhoun, S. [2 ]
Nettari, Ch. [2 ,3 ]
Kherrafi, M. A. [2 ,4 ]
Lalmi, D. [5 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Genie Elect, Lab Instrumentat, BP 32, Bab Ezzouar 16111, Alger, Algeria
[2] CDER, Ctr Dev Energies Renouvelables, Unite Rech Appliquee Energies Renouvelables, URAER, Ghardaia 47133, Algeria
[3] Kasdi Merbah Univ, Lab New & Renewable Energies Dev Arid Zones LENREZ, Ouargla 30000, Algeria
[4] Abou Bekr Belkaid Univ, Fac Technol, Dept Mech Engn, Appl Energy & Thermal Lab ETAP, BP 119, Tilimsen 13000, Algeria
[5] Univ Ghardaia, Res Lab Mat Energy Syst Technol & Environm MESTEL, Rue Aeroport Noumerate, Ghardaia 47000, Algeria
关键词
PCM; Energy storage; Greenhouse; Temperature; Machine learning; PHASE-CHANGE MATERIALS; HEAT-STORAGE; PERFORMANCE; SYSTEM; TEMPERATURE; SELECTION; MODEL;
D O I
10.1016/j.est.2023.108133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This research paper focuses on the design, fabrication, and experimental investigation of a thermal energy storage unit utilizing phase change materials (PCMs) for greenhouses. The study analyzes the performance of PCM heat energy storage systems and uses a machine learning algorithm to forecast greenhouse air temperature. The experimental greenhouse with PCM showed a notable increase in ambient temperature (1-8 degrees C) after midnight compared to conventional greenhouses. The paper provides strategies for implementing PCMs and outlines an operation strategy for achieving near-zero energy consumption in solar greenhouses during winter. The ANN algorithm demonstrated promising results for predicting internal greenhouse parameters. Overall, this study contributes to the advancement of thermal energy storage systems and their potential applications in sustainable agriculture.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Theoretical and Experimental Evaluation of a Thermoelectric Generator Using Concentration and Thermal Energy Storage
    Sui, Xiaomei
    Li, Wenbin
    Zhang, Yuqi
    Wu, Yafeng
    IEEE ACCESS, 2020, 8 (08): : 87820 - 87828
  • [22] Estimating the thermal conductivity of soils using six machine learning algorithms
    Li, Kai-Qi
    Liu, Yong
    Kang, Qing
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2022, 136
  • [23] Machine learning algorithms applied to a prediction of personal overall thermal comfort using skin temperatures and occupants' heating behavior
    Katic, Katarina
    Li, Rongling
    Zeiler, Wim
    APPLIED ERGONOMICS, 2020, 85
  • [24] Experimental investigation of double slope solar still integrated with PCM nanoadditives microencapsulated thermal energy storage
    Afolabi, Lukmon Owolabi
    Enweremadu, Christopher Chintua
    Kareem, M. W.
    Arogundade, Adiat I.
    Irshad, Kashif
    Islam, Saiful
    Oladosu, K. O.
    Elfaghi, Abdulhafid M.
    Didane, Djamal Hissein
    DESALINATION, 2023, 553
  • [25] Thermal conductivity prediction of titania-water nanofluid: A case study using different machine learning algorithms
    Sharma, Palash
    Ramesh, K.
    Parameshwaran, R.
    Deshmukh, Sandip S.
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 30
  • [26] A review on occupancy prediction through machine learning for enhancing energy efficiency, air quality and thermal comfort in the built environment
    Zhang, Wuxia
    Wu, Yupeng
    Calautit, John Kaiser
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 167
  • [27] Experimental investigation of low-temperature latent heat thermal energy storage system using PCM and NEPCM
    John, M. R. Wilson
    Mamidi, Thrinadh
    Subendran, Satishkumar
    Subramanian, L. R. Ganapathy
    2ND INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING (ICAME 2018), 2018, 402
  • [28] Prediction of Energy Efficiency for Residential Buildings Using Supervised Machine Learning Algorithms
    Mahmood, Tahir
    Asif, Muhammad
    ENERGIES, 2024, 17 (19)
  • [29] Stacked ensemble learning approach for PCM-based double-pipe latent heat thermal energy storage prediction towards flexible building energy
    Liu, Yang
    Sun, Yongjun
    Gao, Dian-ce
    Tan, Jiaqi
    Chen, Yuxin
    ENERGY, 2024, 294
  • [30] Experimental study of the thermal characteristics of a heat storage wall with micro-heat pipe array (MHPA) and PCM in solar greenhouse
    Guan, Yong
    Meng, Qi
    Ji, Tianxu
    Hu, Wanling
    Li, Wenlong
    Liu, Tianming
    ENERGY, 2023, 264