Experimental assessment of a greenhouse with and without PCM thermal storage energy and prediction their thermal behavior using machine learning algorithms

被引:14
|
作者
Badji, A. [1 ,2 ]
Benseddik, A. [2 ]
Bensaha, H. [2 ]
Boukhelifa, A. [1 ]
Bouhoun, S. [2 ]
Nettari, Ch. [2 ,3 ]
Kherrafi, M. A. [2 ,4 ]
Lalmi, D. [5 ]
机构
[1] Univ Sci & Technol Houari Boumed, Fac Genie Elect, Lab Instrumentat, BP 32, Bab Ezzouar 16111, Alger, Algeria
[2] CDER, Ctr Dev Energies Renouvelables, Unite Rech Appliquee Energies Renouvelables, URAER, Ghardaia 47133, Algeria
[3] Kasdi Merbah Univ, Lab New & Renewable Energies Dev Arid Zones LENREZ, Ouargla 30000, Algeria
[4] Abou Bekr Belkaid Univ, Fac Technol, Dept Mech Engn, Appl Energy & Thermal Lab ETAP, BP 119, Tilimsen 13000, Algeria
[5] Univ Ghardaia, Res Lab Mat Energy Syst Technol & Environm MESTEL, Rue Aeroport Noumerate, Ghardaia 47000, Algeria
关键词
PCM; Energy storage; Greenhouse; Temperature; Machine learning; PHASE-CHANGE MATERIALS; HEAT-STORAGE; PERFORMANCE; SYSTEM; TEMPERATURE; SELECTION; MODEL;
D O I
10.1016/j.est.2023.108133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This research paper focuses on the design, fabrication, and experimental investigation of a thermal energy storage unit utilizing phase change materials (PCMs) for greenhouses. The study analyzes the performance of PCM heat energy storage systems and uses a machine learning algorithm to forecast greenhouse air temperature. The experimental greenhouse with PCM showed a notable increase in ambient temperature (1-8 degrees C) after midnight compared to conventional greenhouses. The paper provides strategies for implementing PCMs and outlines an operation strategy for achieving near-zero energy consumption in solar greenhouses during winter. The ANN algorithm demonstrated promising results for predicting internal greenhouse parameters. Overall, this study contributes to the advancement of thermal energy storage systems and their potential applications in sustainable agriculture.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Machine learning algorithms to assess the thermal behavior of a Moroccan agriculture greenhouse
    Allouhi, Amine
    Choab, Noureddine
    Hamrani, Abderrachid
    Saadeddine, Said
    CLEANER ENGINEERING AND TECHNOLOGY, 2021, 5
  • [2] Experimental and numerical study of a PCM window model as a thermal energy storage unit
    Durakovic, Benjamin
    Torlak, Muris
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2017, 12 (03) : 272 - 280
  • [3] Experimental research on thermal characteristics of PCM thermal energy storage units
    Zhang, Tianshi
    Liu, Yubin
    Gao, Qing
    Wang, Guohua
    Yan, Zhenmin
    Shen, Ming
    JOURNAL OF THE ENERGY INSTITUTE, 2020, 93 (01) : 76 - 86
  • [4] Experimental Investigation of a Spiral Tube Embedded Latent Thermal Energy Storage Tank Using Paraffin as PCM
    Zhang, Siming
    Zhang, Liyu
    Yang, Xiaohu
    Yu, Xiaoling
    Duan, Fei
    Jin, Liwen
    Meng, Xiangzhao
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105
  • [5] Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings
    Singh, Aditya Kumar
    Rathore, Pushpendra Kumar Singh
    Sharma, R. K.
    Gupta, Naveen Kumar
    Kumar, Rajan
    ENERGY, 2023, 263
  • [6] Experimental study on the cyclic behavior of thermal energy storage in an air-alumina packed bed
    Al-Azawii, Mohammad M. S.
    Theade, Carter
    Danczyk, Megan
    Johnson, Erick
    Anderson, Ryan
    JOURNAL OF ENERGY STORAGE, 2018, 18 : 239 - 249
  • [7] Applied Machine Learning Algorithms for Courtyards Thermal Patterns Accurate Prediction
    Diz-Mellado, Eduardo
    Rubino, Samuele
    Fernandez-Garcia, Soledad
    Gomez-Marmol, Macarena
    Rivera-Gomez, Carlos
    Galan-Marin, Carmen
    MATHEMATICS, 2021, 9 (10)
  • [8] New experimental technique to investigate the thermal behavior of PCM/doped concrete for enhancing thermal/energy storage capability of building envelope
    Pisello, Anna Laura
    Fabiani, Claudia
    Cotana, Franco
    ATI 2017 - 72ND CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2017, 126 : 139 - 146
  • [9] Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage
    Kabeel, A. E.
    Khalil, A.
    Shalaby, S. M.
    Zayed, M. E.
    ENERGY CONVERSION AND MANAGEMENT, 2016, 113 : 264 - 272
  • [10] A comprehensive review of critical analysis of biodegradable waste PCM for thermal energy storage systems using machine learning and deep learning to predict dynamic behavior
    Sharma, Aman
    Singh, Pradeep Kumar
    Makki, Emad
    Giri, Jayant
    Sathish, T.
    HELIYON, 2024, 10 (03)