Controllable fabricate hierarchical CoMoO3@Co9S8/Ni3S2 core-shell arrays for high-performance hybrid supercapacitor

被引:13
|
作者
Yu, G. [1 ]
Zhou, J. [2 ]
Chen, Q. [1 ]
Huang, Z. [1 ]
Tao, K. [1 ]
Han, L. [1 ]
机构
[1] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Zhejiang, Peoples R China
[2] East China Univ Sci & Technol, Sch Mat Sci & Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Core-shell heterostructures; CoMoO3; Battery-type electrode; NI FOAM; ASYMMETRIC SUPERCAPACITORS; CARBON NANOSHEETS; NANOWIRE ARRAYS; ELECTRODE; EFFICIENT; NANOPARTICLES; VACANCIES; BATTERY; NI3S2;
D O I
10.1016/j.mtchem.2023.101601
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rational design and construction of multiphase composite with specifical structure is an effective strategy to fabricate high-performance supercapacitor electrode materials. Herein, the hierarchical CoMoO3@Co9S8/Ni3S2 core-shell arrays are constructed by preparing Co9S8/Ni3S2 core with ion-exchange reaction and fabricating CoMoO3 shell through in situ transformation behavior. Thanks to the special heterostructures core-shell structure, the synergistic effect between multiple components, and the driving action of S-vacancies, hierarchical CoMoO3@Co9S8/Ni3S2 core-shell arrays exhibit battery-type features and deliver a great area specific capacity of 8.14 C cm-2 at current density of 5 mA cm-2. In addition, when assembled into a hybrid supercapacitor with capacitive-type electrode, the device ach-ieves high energy density of 0.33 mWh cm-2 at the power density of 5.66 mW cm-2 and displays long-term durability with capacity retention of 93.7% and high Coulombic efficiency of 95.01% after 6000 cycles.& COPY; 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [32] Hierarchical MnCo2O4@CoMoO4 core-shell nanowire arrays supported on Ni foam for supercapacitor
    Feng, Yamin
    Liu, Weifeng
    Sun, Lingling
    Zhu, Yu
    Chen, Yuanyuan
    Meng, Ming
    Li, Jitao
    Yang, Jing
    Zhang, Yan
    Liu, Kuili
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 753 : 761 - 770
  • [33] Facile synthesis of dendritic Ni3S2 nanosheet arrays for hybrid supercapacitor electrodes
    Jiefei Ding
    Guanglong Li
    Yingdong Qu
    Ionics, 2022, 28 : 871 - 877
  • [34] Facile synthesis of dendritic Ni3S2 nanosheet arrays for hybrid supercapacitor electrodes
    Ding, Jiefei
    Li, Guanglong
    Qu, Yingdong
    IONICS, 2022, 28 (02) : 871 - 877
  • [35] Hierarchical structure Ni3S2/Ni(OH)2 nanoarrays towards high-performance supercapacitors
    Pan, Xinbo
    Zhao, Lijun
    Liu, Hongbin
    Guo, Manying
    Han, Chengdong
    Wang, Wenquan
    JOURNAL OF SOLID STATE CHEMISTRY, 2022, 309
  • [36] Formation of hierarchical core-shell hollow Co3S4@NiCo2S4 nanocages with enhanced performance for supercapacitor
    Huang, Xiaoyu
    Yang, Yuan
    Zhao, Jialu
    Huang, Yin
    Wang, Xiuhua
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 947
  • [37] Controllable synthesis of CoMoO4@Co3O4 core-shell composites for high performance supercapacitors
    Li, Jing
    Lin, Hongguang
    Ai, Zhenyu
    Feng, Haoran
    Li, Yang
    Xu, Jianguang
    Xie, Huaqing
    JOURNAL OF ENERGY STORAGE, 2025, 107
  • [38] Hierarchical core-shell 2D MOF nanosheet hybrid arrays for high-performance hybrid supercapacitors
    Bi, Qiong
    Ma, Qingxiang
    Tao, Kai
    Han, Lei
    DALTON TRANSACTIONS, 2021, 50 (23) : 8179 - 8188
  • [39] Construction of layered C@MnNiCo-OH/Ni3S2 core-shell heterostructure with enhanced electrochemical performance for asymmetric supercapacitor
    Zhao, Houqiang
    Wang, Jiemei
    Sui, Yanwei
    Wei, Fuxiang
    Qi, Jiqiu
    Meng, Qingkun
    Ren, Yaojian
    He, Yezeng
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (08) : 11145 - 11157
  • [40] Ni-Co-Based Nanowire Arrays with Hierarchical Core-Shell Structure Electrodes for High-Performance Supercapacitors
    Fan, Yanchen
    Liu, Shitai
    Han, Xiao
    Xiang, Rong
    Gong, Yongji
    Wang, Tianshuai
    Jing, Yu
    Maruyama, Shigeo
    Zhang, Qianfan
    Zhao, Yan
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (08): : 7580 - 7587