Critical roles of metal-organic frameworks in improving the Zn anode in aqueous zinc-ion batteries

被引:82
|
作者
Gopalakrishnan, Mohan [1 ]
Ganesan, Sunantha [2 ]
Nguyen, Mai Thanh [3 ]
Yonezawa, Tetsu [3 ]
Praserthdam, Supareak [1 ,4 ,5 ]
Pornprasertsuk, Rojana [6 ,7 ,8 ,9 ]
Kheawhom, Soorathep [1 ,5 ,9 ]
机构
[1] Chulalongkorn Univ, Fac Engn, Dept Chem Engn, Bangkok 10330, Thailand
[2] Vellore Inst Technol, Sch BioSci & Technol, Vellore 632014, Tamil Nadu, India
[3] Hokkaido Univ, Fac Engn, Div Mat Sci & Engn, Hokkaido 0608628, Japan
[4] Chulalongkorn Univ, Ctr Excellence Catalysis & Catalyt React Engn CECC, Bangkok 10330, Thailand
[5] Chulalongkorn Univ, Fac Engn, Biocircular Green econ Technol & Engn Ctr BCGeTEC, Bangkok 10330, Thailand
[6] Chulalongkorn Univ, Fac Sci, Dept Mat Sci, Bangkok 10330, Thailand
[7] Mat Technol Chulalongkorn Univ, Ctr Excellence Petrochem, Bangkok 10330, Thailand
[8] Nagaoka Univ Technol, Dept Mat Sci & Bioengn, Niigata 9402188, Japan
[9] Chulalongkorn Univ, Ctr Excellence Adv Mat Energy Storage, Bangkok 10330, Thailand
关键词
MOF protective layers; Dendrite-free; Zn-ion solvation; SEI layer; Zn-ion batteries; RECENT PROGRESS; PERFORMANCE; DESIGN;
D O I
10.1016/j.cej.2023.141334
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Due to their high energy density, safety, and low cost, rechargeable aqueous zinc-ion batteries (AZIBs) have recently gained much interest. Issues, however, such as anode side reactions, passivation, corrosion, hydrogen evolution, and Zn dendrite growth, continue to pose significant barriers to further AZIBs applications. Herein, metal-organic frameworks (MOFs) are presented as potential candidates to suppress the above-mentioned problems effectively. Because of their multifunctional homogeneous porous structure and abundance of active sites with substantial surface areas, MOFs can enhance the performance of the Zn anode materials, electrolytes, and electrolyte additives. First, it emphasizes the inherent chemical characteristics, difficulties, and solvation of Zn anodes. Then, MOFs/MOF-derived anode grids or layers, anode modifications by MOFs and 3D host, MOF-based electrolytes, and separators are classified and compared in terms of structural and electrochemical properties, issues, and solutions. This review aims to provide potential directions and perspectives for the rational design of MOF-based Zn anodes and basic comprehension of the mechanisms affecting Zn2+ solvation in high-performance AZIBs. Finally, the challenges and opportunities of designing MOF-based Zn anodes are pro-posed to extend the cycling lifetime and promote the commercialization of AZIBs.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries
    Zhao, Jing
    Ying, Yunpan
    Wang, Guiling
    Hu, Kedi
    Yuan, Yi Di
    Ye, Hualin
    Liu, Zhaolin
    Lee, Jim Yang
    Zhao, Dan
    ENERGY STORAGE MATERIALS, 2022, 48 : 82 - 89
  • [22] Stable zinc metal anode with an ultrathin carbon coating for zinc-ion batteries
    Zhang, Xiaolin
    Ruan, Qingdong
    Liu, Liangliang
    Li, Dan
    Xu, Yue
    Wang, Yinchuan
    Liu, Jinyuan
    Huang, Chao
    Xiong, Fangyu
    Wang, Bin
    Chu, Paul K.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 936
  • [23] Anode Modification of Aqueous Rechargeable Zinc-Ion Batteries for Preventing Dendrite Growth: A Review
    Li, Yanlin
    Chen, Shenghua
    Duan, Wenyuan
    Nan, Yanli
    Ding, Donghai
    Xiao, Guoqing
    ENERGY TECHNOLOGY, 2024, 12 (02)
  • [24] Delving into different roles of covalent organic frameworks in zinc-ion batteries and zinc-air batteries: A state-of-art review
    Zhang, Yuluan
    Wang, Yi-Rong
    Zhou, Luanhua
    Guo, Can
    Shi, Mingjin
    Chen, Zhengyang
    Tian, Yuan
    Chen, Yifa
    Lan, Ya-Qian
    COORDINATION CHEMISTRY REVIEWS, 2025, 536
  • [25] Challenges and protective strategies on zinc anode toward practical aqueous zinc-ion batteries
    Al-Abbasi, Malek
    Zhao, Yanrui
    He, Honggang
    Liu, Hui
    Xia, Huarong
    Zhu, Tianxue
    Wang, Kexuan
    Xu, Zhu
    Wang, Huibo
    Zhang, Wei
    Lai, Yuekun
    Ge, Mingzheng
    CARBON NEUTRALIZATION, 2024, 3 (01): : 108 - 141
  • [26] Issues and solutions toward zinc anode in aqueous zinc-ion batteries: A mini review
    Xie, Chunlin
    Li, Yihu
    Wang, Qi
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    CARBON ENERGY, 2020, 2 (04) : 540 - 560
  • [27] Unlocking Double Redox Reaction of Metal-Organic Framework for Aqueous Zinc-Ion Battery
    Deng, Shenzhen
    Xu, Bingang
    Zhao, Jingxin
    Kan, Chi Wai
    Liu, Xinlong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (17)
  • [28] Stabilizing Zn Anodes with Interfacial Engineering for Aqueous Zinc-ion Batteries
    Lu, Wen
    Shao, Yingbo
    Yan, Ruiqiang
    Zhong, Yijun
    Ning, Jiqiang
    Hu, Yong
    BATTERIES & SUPERCAPS, 2024, 7 (02)
  • [29] Calcium Alginate Hydrogel Coating Comprehensively Optimizes Zn Deposition Behavior of Aqueous Zinc-Ion Batteries Anode
    Liu, Huan
    Li, Zhuo
    Sui, Binbin
    Bao, Qingpeng
    Wang, Pengfei
    Gong, Zhe
    Zhang, Yuhang
    Wu, Yuhan
    Shi, Fanian
    Zhou, Mingdong
    Zhu, Kai
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (31) : 13611 - 13622
  • [30] A dendrite-free anode for stable aqueous rechargeable zinc-ion batteries
    Kumar, Santosh
    Yoon, Hocheol
    Park, Hyeonghun
    Park, Geumyong
    Suh, Seokho
    Kim, Hyeong-Jin
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2022, 108 : 321 - 327