Mean Convergence and Weak Laws of Large Numbers for Multidimensional Arrays of Random Elements

被引:1
作者
Anh, Vo Thi Van [1 ]
Tu, Nguyen Ngoc [1 ]
机构
[1] HCMC Univ Technol & Educ, Dept Appl Sci, 01 Vo Ngan St, Ho Chi Minh City, Vietnam
关键词
Mean convergence; Weak law of large numbers; Banach space-valued random element; Maximum normed partial sum; RANDOM-VARIABLES; DOUBLE SUMS; MARCINKIEWICZ;
D O I
10.1007/s40840-023-01484-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper establishes mean convergence theorems and weak laws of large numbers for the maximum normed partial sums from a d-dimensional array of random elements taking values in a real separable Banach space, irrespective of their joint distributions. The main results extend and improve several ones in the literature. The sharpness of the results is illustrated by three examples.
引用
收藏
页数:12
相关论文
共 20 条
[1]   The Marcinkiewicz-Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences [J].
Anh, Vu T. N. ;
Hien, Nguyen T. T. ;
Thanh, Le V. ;
Van, Vo T. H. .
JOURNAL OF THEORETICAL PROBABILITY, 2021, 34 (01) :331-348
[2]  
[Anonymous], 2013, NEW METHOD LOCATING, DOI DOI 10.1007/978-1-4614-4708-5
[3]   On a Weak Law of Large Numbers with Regularly Varying Normalizing Sequences [J].
Boukhari, Fakhreddine .
JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (03) :2068-2079
[4]   A new type of compact uniform integrability with application to degenerate mean convergence of weighted sums of Banach space valued random elements [J].
Cabrera, Manuel Ordonez ;
Rosalsky, Andrew ;
Unver, Mehmet ;
Volodin, Andrei .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 487 (01)
[5]   On the concept of B-statistical uniform integrability of weighted sums of random variables and the law of large numbers with mean convergence in the statistical sense [J].
Cabrera, Manuel Ordonez ;
Rosalsky, Andrew ;
Unver, Mehmet ;
Volodin, Andrei .
TEST, 2021, 30 (01) :83-102
[6]   Extensions of the strong law of large numbers of Marcinkiewicz and Zygmund for dependent variables [J].
Chandra, TK ;
Ghosal, S .
ACTA MATHEMATICA HUNGARICA, 1996, 71 (04) :327-336
[7]  
Fazekas I, 1998, PUBL MATH-DEBRECEN, V53, P149
[8]   An extension of the Kolmogorov-Feller weak law of large numbers with an application to the St. Petersburg game [J].
Gut, A .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (03) :769-779
[9]   MARCINKIEWICZ LAWS AND CONVERGENCE RATES IN LAW OF LARGE NUMBERS FOR RANDOM-VARIABLES WITH MULTIDIMENSIONAL INDEXES [J].
GUT, A .
ANNALS OF PROBABILITY, 1978, 6 (03) :469-482
[10]   A Generalization of Weak Law of Large Numbers [J].
Kruglov, Victor M. .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (04) :674-683