Comparative Studies on Resampling Techniques in Machine Learning and Deep Learning Models for Drug-Target Interaction Prediction

被引:8
|
作者
Azlim Khan, Azwaar Khan [1 ]
Ahamed Hassain Malim, Nurul Hashimah [1 ]
机构
[1] Univ Sains Malaysia, Sch Comp Sci, George Town 11800, Malaysia
来源
MOLECULES | 2023年 / 28卷 / 04期
关键词
drug-target interaction; data resampling; machine learning; deep learning; class imbalance; SMOTE; DISCOVERY; IDENTIFICATION; THERAPY; SMOTE;
D O I
10.3390/molecules28041663
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The prediction of drug-target interactions (DTIs) is a vital step in drug discovery. The success of machine learning and deep learning methods in accurately predicting DTIs plays a huge role in drug discovery. However, when dealing with learning algorithms, the datasets used are usually highly dimensional and extremely imbalanced. To solve this issue, the dataset must be resampled accordingly. In this paper, we have compared several data resampling techniques to overcome class imbalance in machine learning methods as well as to study the effectiveness of deep learning methods in overcoming class imbalance in DTI prediction in terms of binary classification using ten (10) cancer-related activity classes from BindingDB. It is found that the use of Random Undersampling (RUS) in predicting DTIs severely affects the performance of a model, especially when the dataset is highly imbalanced, thus, rendering RUS unreliable. It is also found that SVM-SMOTE can be used as a go-to resampling method when paired with the Random Forest and Gaussian Naive Bayes classifiers, whereby a high F1 score is recorded for all activity classes that are severely and moderately imbalanced. Additionally, the deep learning method called Multilayer Perceptron recorded high F1 scores for all activity classes even when no resampling method was applied.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Deep Learning based Models for Drug-Target Interactions
    Raheem, Ali K. Abdul
    Dhannoon, Ban N.
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (11) : 3605 - 3616
  • [22] Drug-Target Interaction Prediction in Drug Repositioning Based on Deep Semi-Supervised Learning
    Bahi, Meriem
    Batouche, Mohamed
    COMPUTATIONAL INTELLIGENCE AND ITS APPLICATIONS, 2018, 522 : 302 - 313
  • [23] Drug Target Interaction Prediction Using Machine Learning Techniques - A Review
    Suruliandi, A.
    Idhaya, T.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2022,
  • [24] Drug Target Interaction Prediction Using Machine Learning Techniques - A Review
    Suruliandi, A.
    Idhaya, T.
    Raja, S. P.
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2024, 8 (06):
  • [25] Deep learning-based transcriptome data classification for drug-target interaction prediction
    Xie, Lingwei
    He, Song
    Song, Xinyu
    Bo, Xiaochen
    Zhang, Zhongnan
    BMC GENOMICS, 2018, 19
  • [26] Deep learning-based transcriptome data classification for drug-target interaction prediction
    Lingwei Xie
    Song He
    Xinyu Song
    Xiaochen Bo
    Zhongnan Zhang
    BMC Genomics, 19
  • [27] A multiple kernel learning algorithm for drug-target interaction prediction
    André C. A. Nascimento
    Ricardo B. C. Prudêncio
    Ivan G. Costa
    BMC Bioinformatics, 17
  • [28] A multiple kernel learning algorithm for drug-target interaction prediction
    Nascimento, Andre C. A.
    Prudencio, Ricardo B. C.
    Costa, Ivan G.
    BMC BIOINFORMATICS, 2016, 17
  • [29] Predicting Drug-target Interaction via Wide and Deep Learning
    Du, Yingyi
    Wang, Jihong
    Wang, Xiaodan
    Chen, Jiyun
    Chang, Huiyou
    PROCEEDINGS OF 2018 6TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND COMPUTATIONAL BIOLOGY (ICBCB 2018), 2018, : 128 - 132
  • [30] Enhancing drug discovery in schizophrenia: a deep learning approach for accurate drug-target interaction prediction - DrugSchizoNet
    J., Sherine Glory
    P., Durgadevi
    P., Ezhumalai
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2025, 28 (02) : 170 - 187