Ni2+-doped ZnMn2O4 with enhanced electrochemical performance as cathode material for aqueous zinc-ion batteries

被引:8
|
作者
Qin, Liping [1 ,2 ]
Zhu, Qi [1 ]
Li, Lijun [1 ]
Cheng, Hao [1 ]
Li, Wentao [1 ]
Fang, Zhijie [3 ]
Mo, Man [3 ]
Chen, Shunfeng [4 ]
机构
[1] Guangxi Univ Sci & Technol, Coll Biol & Chem Engn, Guangxi Key Lab Green Proc Sugar Resources, Liuzhou 545006, Guangxi, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
[3] Guangxi Univ Sci & Technol, Sch Elect Engn, Liuzhou 545006, Guangxi, Peoples R China
[4] Guangxi Univ Sci & Technol, Acad Affairs Off, Liuzhou 545006, Guangxi, Peoples R China
关键词
Ni2+-doped ZnMn2O4; Aqueous zinc-ion batteries; Cathode materials; Energy conversion and storage; FABRICATION; MECHANISM; STORAGE; XPS;
D O I
10.1007/s10008-022-05370-0
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Manganese-based materials are considered as potential cathode materials for aqueous zinc-ion batteries due to the advantages of high voltage platform, non-toxic, and environmental protection. However, the rapid decline capacity due to the dissolution of manganese and the low conductivity restrict its further development. In this paper, Ni2+-doped ZnMn2O4 nanoparticles were prepared and used as cathode materials for aqueous zinc-ion batteries. The Ni2+-doping effectively improves its electrochemical performance. The Ni2+-doped ZnMn2O4 cathode shows a discharge-specific capacity of 175 mAh g(-1) after an activation process at current density of 100 mA g(-1). At a high current density of 1A g(-1), the cathode displays a specific capacity of 120 mAh g(-1), and the Coulombic efficiency of above 97% can be maintained throughout the cycles except for the first cycle, indicating a high reversibility of charging/discharging. The Ni2+-doping increases the conductivity and zinc-ion diffusion coefficient of the material electrode through destroying the periodic potential field generated by the material. It shows that the synergistic effect of manganese and transition metal ions provides a possible direction for the future development of cathode materials for aqueous zinc-ion batteries.
引用
收藏
页码:773 / 784
页数:12
相关论文
共 50 条
  • [21] Pulsed electro-synthesized tunable crystallite sizes ZnMn2O4/Mn2O3 nanocomposite as high-performance cathode material for aqueous zinc-ion batteries
    Saadi-motaallegh, Shabnam
    Javanbakht, Mehran
    Omidvar, Hamid
    Habibzadeh, Sajjad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 914
  • [22] Sulfur-doped enhanced ZnMn2O4 spinel for high-capacity zinc-ion batteries: Facilitating charge transfer
    Yuan, Jingjing
    Xi, Wenyong
    Qiao, Yifan
    Zhou, Yan
    Ruan, Yuan
    Xu, Hui
    Li, Yifan
    He, Junjie
    He, Guangyu
    Chen, Haiqun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2024, 974
  • [23] Enhanced electrochemical performance of iron-doped (NH4)2V12O27•xH2O as a cathode material for aqueous zinc-ion batteries
    Song, Jiajia
    Kou, Lingjiang
    Wang, Yong
    Pang, Yong
    Ai, Taotao
    Kajiyoshi, Koji
    Liu, Mengting
    Bao, Weiwei
    Li, Wenhu
    Wattanapaphawong, Panya
    REACTION CHEMISTRY & ENGINEERING, 2023, 8 (07) : 1545 - 1552
  • [24] Regulating the kinetics of zinc-ion migration in spinel ZnMn2O4 through iron doping boosted aqueous zinc-ion storage performance
    Chen, Feiran
    Zhang, Yan
    Chen, Shuai
    Zang, Hu
    Liu, Changjiang
    Sun, Hongxia
    Geng, Baoyou
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 649 : 703 - 712
  • [25] Coral-Like Hierarchical Nanostructured ZnMn2O4/Mn2O3 Composites Synthesized by Zinc-Absent Method as a High-Performance Cathode Material for Aqueous Zinc-Ion Batteries
    Cai, Kexing
    Luo, Shao-Hua
    Cong, Jun
    Li, Kun
    Yan, Sheng-xue
    Hou, Peng-qing
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (05)
  • [26] Graphene-wrapped hollow ZnMn2O4 microspheres for high-performance cathode materials of aqueous zinc ion batteries
    Chen, Linlin
    Yang, Zhanhong
    Qin, Haigang
    Zeng, Xiao
    Meng, Jinlei
    Chen, Hongzhe
    ELECTROCHIMICA ACTA, 2019, 317 : 155 - 163
  • [27] Porous cubic MnCo 2 O 4 as a high-performance cathode material for aqueous zinc-ion batteries
    Wu, Yujuan
    Hu, Yingying
    Zhao, Pei
    Zhang, Huihui
    Wang, Ruilin
    Mao, Yiyang
    Wang, Mengbo
    Yang, Ziwen
    Zhang, Xinlei
    Ding, Kun
    Guo, Yong
    Zhang, Qianjun
    Xu, Lianyi
    Wang, Baofeng
    SOLID STATE IONICS, 2024, 411
  • [28] The Synthesis and Electrochemical Performance of ZnMn2O4 Hollow Microspheres as Anode Material for Lithium-Ion Batteries
    Wang Hong-Bo
    Cheng Fang-Yi
    Tao Zhan-Liang
    Liang Jing
    Chen Jun
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2011, 27 (05) : 816 - 822
  • [29] Synthesis and Optimization of ZnMn2O4 Cathode Material for Zinc-Ion Battery by Citric Acid Sol-Gel Method
    Cai, Kexing
    Luo, Shao-hua
    Cong, Jun
    Li, Kun
    Yan, Sheng-xue
    Hou, Peng-ging
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    Lei, Xuefei
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (03)
  • [30] Rational design of ZnMn2O4 nanoparticles on carbon nanotubes for high-rate and durable aqueous zinc-ion batteries
    Gao, Fei
    Mei, Bing
    Xu, Xiangyu
    Ren, Jinghui
    Zhao, Decheng
    Zhang, Zhen
    Wang, Zhoulu
    Wu, Yutong
    Liu, Xiang
    Zhang, Yi
    CHEMICAL ENGINEERING JOURNAL, 2022, 448