Stellarator coil optimization supporting multiple magnetic configurations

被引:5
作者
Lee, Brandon F. F. [1 ,2 ,3 ]
Paul, Elizabeth J. J. [1 ,4 ]
Stadler, Georg [5 ]
Landreman, Matt [6 ]
机构
[1] Princeton Plasma Phys Lab, 100 Stellarator Rd, Princeton, NJ 08536 USA
[2] Univ Missouri, Dept Biomed Biol & Chem Engn, 416 South 6th St, Columbia, MO 65211 USA
[3] Univ Missouri, Dept Phys & Astron, 701 South Coll Ave, Columbia, MO 65211 USA
[4] Princeton Univ, Dept Astrophys Sci, 4 Ivy Lane, Princeton, NJ 08544 USA
[5] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
[6] Univ Maryland, Inst Res Elect & Appl Phys, 8223 Paint Branch Dr, College Pk, MD 20742 USA
关键词
stellarator; optimization; flexibility; coil design; FLEXIBILITY; TRANSPORT; ALGORITHM; DESIGN;
D O I
10.1088/1741-4326/aca10d
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a technique that can be used to design stellarators with a high degree of experimental flexibility. For our purposes, flexibility is defined by the range of values the rotational transform can take on the magnetic axis of the vacuum field while maintaining satisfactory quasisymmetry. We show that accounting for configuration flexibility during the modular coil design improves flexibility beyond that attained by previous methods. Careful placement of planar control coils and the incorporation of an integrability objective enhance the quasisymmetry and nested flux surface volume of each configuration. We show that it is possible to achieve flexibility, quasisymmetry, and nested flux surface volume to reasonable degrees with a relatively simple coil set through an NCSX-like example. This example coil design is optimized to achieve three rotational transform targets and nested flux surface volumes in each magnetic configuration larger than the NCSX design plasma volume. Our work suggests that there is a tradeoff between flexibility, quasisymmetry, and volume of nested flux surfaces.
引用
收藏
页数:8
相关论文
共 32 条
  • [11] STEEPEST-DESCENT MOMENT METHOD FOR 3-DIMENSIONAL MAGNETOHYDRODYNAMIC EQUILIBRIA
    HIRSHMAN, SP
    WHITSON, JC
    [J]. PHYSICS OF FLUIDS, 1983, 26 (12) : 3553 - 3568
  • [12] ASCOT simulations of 14 MeV neutron rates in W7-X: effect of magnetic configuration
    Kontula, J.
    Koschinsky, J. P.
    Akaslompolo, S.
    Kurki-Suonio, T.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2021, 63 (03)
  • [13] Optimization of quasi-symmetric stellarators with self-consistent bootstrap current and energetic particle confinement
    Landreman, M.
    Buller, S.
    Drevlak, M.
    [J]. PHYSICS OF PLASMAS, 2022, 29 (08)
  • [14] Landreman M., 2021, Open Source Software, V6, P3525, DOI DOI 10.21105/JOSS.03525
  • [15] Constructing stellarators with quasisymmetry to high order
    Landreman, Matt
    Sengupta, Wrick
    [J]. JOURNAL OF PLASMA PHYSICS, 2019, 85 (06)
  • [16] Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates
    Landreman, Matt
    Sengupta, Wrick
    [J]. JOURNAL OF PLASMA PHYSICS, 2018, 84 (06)
  • [17] Direct construction of optimized stellarator shapes. Part 2. Numerical quasisymmetric solutions
    Landreman, Matt
    Sengupta, Wrick
    Plunk, Gabriel G.
    [J]. JOURNAL OF PLASMA PHYSICS, 2019, 85 (01)
  • [18] Evaluation of 1/ν neoclassical transport in stellarators
    Nemov, VV
    Kasilov, SV
    Kernbichler, W
    Heyn, MF
    [J]. PHYSICS OF PLASMAS, 1999, 6 (12) : 4622 - 4632
  • [19] NCSX magnetic configuration flexibility and robustness
    Pomphrey, N.
    Boozer, A.
    Brooks, A.
    Hatcher, R.
    Hirshman, S. P.
    Hudson, S.
    Ku, L. P.
    Lazarus, E. A.
    Mynick, H.
    Monticello, D.
    Redi, M.
    Reiman, A.
    Zarnstorff, M. C.
    Zatz, I.
    [J]. FUSION SCIENCE AND TECHNOLOGY, 2007, 51 (02) : 181 - 202
  • [20] Simpler optimized stellarators using permanent magnets
    Qian, T.
    Zarnstorff, M.
    Bishop, D.
    Chamblis, A.
    Dominguez, A.
    Pagano, C.
    Patch, D.
    Zhu, C.
    [J]. NUCLEAR FUSION, 2022, 62 (08)