Covalent Protein Immobilization on 3D-Printed Microfiber Meshes for Guided Cartilage Regeneration

被引:28
作者
Ainsworth, Madison J. [1 ,2 ]
Lotz, Oliver [3 ,4 ,5 ]
Gilmour, Aaron [3 ,5 ,6 ]
Zhang, Anyu [3 ]
Chen, Michael J. [7 ]
McKenzie, David R. [5 ]
Bilek, Marcela M. M. [3 ,4 ,5 ,6 ,8 ]
Malda, Jos [1 ,2 ,9 ]
Akhavan, Behnam [3 ,5 ,8 ,10 ,11 ]
Castilho, Miguel [1 ,2 ,12 ,13 ]
机构
[1] Univ Med Ctr Utrecht, Regenerat Med Ctr Utrecht, NL-3584 Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Orthoped, NL-3584 Utrecht, Netherlands
[3] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2006, Australia
[4] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[5] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[6] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[7] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[8] Univ Sydney, Sydney Nano Inst, Sydney, NSW 2006, Australia
[9] Univ Utrecht, Fac Vet Med, Dept Clin Sci, NL-3584 Utrecht, Netherlands
[10] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
[11] Hunter Med Res Inst HMRI, New Lambton Hts, NSW 2305, Australia
[12] Tech Univ Eindhoven, Dept Biomed Engn, Eindhoven, Netherlands
[13] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
基金
澳大利亚研究理事会;
关键词
atmospheric-pressure plasma; cartilage; melt electrowriting; protein immobilization; stem cell differentiation; technology convergence; transforming growth factor beta; TGF-BETA; SCAFFOLDS; DIFFERENTIATION; HYDROGEL; GELATIN; REPAIR; BONE; BIO;
D O I
10.1002/adfm.202206583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current biomaterial-based strategies explored to treat articular cartilage defects have failed to provide adequate physico-chemical cues in order to guide functional tissue regeneration. Here, it is hypothesized that atmospheric-pressure plasma (APPJ) treatment and melt electrowriting (MEW) will produce microfiber support structures with covalently-immobilized transforming growth factor beta-1 (TGF beta 1) that can stimulate the generation of functional cartilage tissue. The effect of APPJ operational speeds to activate MEW polycaprolactone meshes for immobilization of TGF beta 1 is first investigated and chondrogenic differentiation and neo-cartilage production are assessed in vitro. All APPJ speeds test enhanced hydrophilicity of the meshes, with the slow treatment speed having significantly less C-C/C-H and more COOH than the untreated meshes. APPJ treatment increases TGF beta 1 loading efficiency. Additionally, in vitro experiments highlight that APPJ-based TGF beta 1 attachment to the scaffolds is more advantageous than direct supplementation within the medium. After 28 days of culture, the group with immobilized TGF beta 1 has significantly increased compressive modulus (more than threefold) and higher glycosaminoglycan production (more than fivefold) than when TGF beta 1 is supplied through the medium. These results demonstrate that APPJ activation allows reagent-free, covalent immobilization of TGF beta 1 on microfiber meshes and, importantly, that the biofunctionalized meshes can stimulate neo-cartilage matrix formation. This opens new perspectives for guided tissue regeneration.
引用
收藏
页数:14
相关论文
共 51 条
[21]   Cartilage diseases [J].
Krishnan, Yamini ;
Grodzinsky, Alan J. .
MATRIX BIOLOGY, 2018, 71-72 :51-69
[22]  
Law K.-Y., 2016, Surface Wetting
[23]   The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells [J].
Levato, Riccardo ;
Webb, William R. ;
Otto, Iris A. ;
Mensinga, Anneloes ;
Zhang, Yadan ;
van Rijen, Mattie ;
van Weeren, Rene ;
Khan, Ilyas M. ;
Malda, Jos .
ACTA BIOMATERIALIA, 2017, 61 :41-53
[24]   Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct [J].
Lim, Erh-Hsuin ;
Sardinha, Jose Paulo ;
Myers, Simon ;
Stevens, Molly .
ARCHIVES OF PLASTIC SURGERY-APS, 2013, 40 (06) :676-686
[25]   Surface modification of poly(ε-caprolactone) using a dielectric barrier discharge in atmospheric pressure glow discharge mode [J].
Little, Uel ;
Buchanan, Fraser ;
Harkin-Jones, Eileen ;
Graham, Bill ;
Fox, Brendan ;
Boyd, Adrian ;
Meenan, Brian ;
Dickson, Glenn .
ACTA BIOMATERIALIA, 2009, 5 (06) :2025-2032
[26]   Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects [J].
Lu, X. ;
Naidis, G. V. ;
Laroussi, M. ;
Reuter, S. ;
Graves, D. B. ;
Ostrikov, K. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 630 :1-84
[27]   Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell orientation [J].
Ma, ZW ;
He, W ;
Yong, T ;
Ramakrishna, S .
TISSUE ENGINEERING, 2005, 11 (7-8) :1149-1158
[28]   An atmospheric pressure plasma jet to tune the bioactive peptide coupling to polycaprolactone electrospun layers [J].
Maffei, Alessandro ;
Michieli, Niccolo ;
Brun, Paola ;
Zamuner, Annj ;
Zaggia, Alessandro ;
Roso, Martina ;
Kalinic, Boris ;
Falzacappa, Emanuele Verga ;
Scopece, Paolo ;
Gross, Silvia ;
Dettin, Monica ;
Patelli, Alessandro .
APPLIED SURFACE SCIENCE, 2020, 507
[29]   Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe [J].
Mance, Diana ;
Wiese, Ruben ;
Kewitz, Thorben ;
Kersten, Holger .
EUROPEAN PHYSICAL JOURNAL D, 2018, 72 (06)
[30]   Cartilage repair:: Generations of autologous chondrocyte transplantation [J].
Marlovits, S ;
Zeller, P ;
Singer, P ;
Resinger, C ;
Vécsei, V .
EUROPEAN JOURNAL OF RADIOLOGY, 2006, 57 (01) :24-31