Covalent Protein Immobilization on 3D-Printed Microfiber Meshes for Guided Cartilage Regeneration

被引:28
作者
Ainsworth, Madison J. [1 ,2 ]
Lotz, Oliver [3 ,4 ,5 ]
Gilmour, Aaron [3 ,5 ,6 ]
Zhang, Anyu [3 ]
Chen, Michael J. [7 ]
McKenzie, David R. [5 ]
Bilek, Marcela M. M. [3 ,4 ,5 ,6 ,8 ]
Malda, Jos [1 ,2 ,9 ]
Akhavan, Behnam [3 ,5 ,8 ,10 ,11 ]
Castilho, Miguel [1 ,2 ,12 ,13 ]
机构
[1] Univ Med Ctr Utrecht, Regenerat Med Ctr Utrecht, NL-3584 Utrecht, Netherlands
[2] Univ Med Ctr Utrecht, Dept Orthoped, NL-3584 Utrecht, Netherlands
[3] Univ Sydney, Sch Biomed Engn, Sydney, NSW 2006, Australia
[4] Univ Sydney, Sch Aerosp Mech & Mechatron Engn, Sydney, NSW 2006, Australia
[5] Univ Sydney, Sch Phys, Sydney, NSW 2006, Australia
[6] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[7] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[8] Univ Sydney, Sydney Nano Inst, Sydney, NSW 2006, Australia
[9] Univ Utrecht, Fac Vet Med, Dept Clin Sci, NL-3584 Utrecht, Netherlands
[10] Univ Newcastle, Sch Engn, Callaghan, NSW 2308, Australia
[11] Hunter Med Res Inst HMRI, New Lambton Hts, NSW 2305, Australia
[12] Tech Univ Eindhoven, Dept Biomed Engn, Eindhoven, Netherlands
[13] Eindhoven Univ Technol, Inst Complex Mol Syst, NL-5600 MB Eindhoven, Netherlands
基金
澳大利亚研究理事会;
关键词
atmospheric-pressure plasma; cartilage; melt electrowriting; protein immobilization; stem cell differentiation; technology convergence; transforming growth factor beta; TGF-BETA; SCAFFOLDS; DIFFERENTIATION; HYDROGEL; GELATIN; REPAIR; BONE; BIO;
D O I
10.1002/adfm.202206583
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Current biomaterial-based strategies explored to treat articular cartilage defects have failed to provide adequate physico-chemical cues in order to guide functional tissue regeneration. Here, it is hypothesized that atmospheric-pressure plasma (APPJ) treatment and melt electrowriting (MEW) will produce microfiber support structures with covalently-immobilized transforming growth factor beta-1 (TGF beta 1) that can stimulate the generation of functional cartilage tissue. The effect of APPJ operational speeds to activate MEW polycaprolactone meshes for immobilization of TGF beta 1 is first investigated and chondrogenic differentiation and neo-cartilage production are assessed in vitro. All APPJ speeds test enhanced hydrophilicity of the meshes, with the slow treatment speed having significantly less C-C/C-H and more COOH than the untreated meshes. APPJ treatment increases TGF beta 1 loading efficiency. Additionally, in vitro experiments highlight that APPJ-based TGF beta 1 attachment to the scaffolds is more advantageous than direct supplementation within the medium. After 28 days of culture, the group with immobilized TGF beta 1 has significantly increased compressive modulus (more than threefold) and higher glycosaminoglycan production (more than fivefold) than when TGF beta 1 is supplied through the medium. These results demonstrate that APPJ activation allows reagent-free, covalent immobilization of TGF beta 1 on microfiber meshes and, importantly, that the biofunctionalized meshes can stimulate neo-cartilage matrix formation. This opens new perspectives for guided tissue regeneration.
引用
收藏
页数:14
相关论文
共 51 条
[1]   Atmospheric Pressure Plasma Jet Treatment of Polymers Enables Reagent-Free Covalent Attachment of Biomolecules for Bioprinting [J].
Alavi, Seyedeh Khadijeh ;
Lotz, Oliver ;
Akhavan, Behnam ;
Yeo, Giselle ;
Walia, Rashi ;
McKenzie, David R. ;
Bilek, Marcela M. .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (34) :38730-38743
[2]  
Becerra J, 2010, TISSUE ENG PART B-RE, V16, P617, DOI [10.1089/ten.teb.2010.0191, 10.1089/ten.TEB.2010.0191]
[3]   Articular Joint-Simulating Mechanical Load Activates Endogenous TGF-β in a Highly Cellularized Bioadhesive Hydrogel for Cartilage Repair [J].
Behrendt, Peter ;
Ladner, Yann ;
Stoddart, Martin James ;
Lippross, Sebastian ;
Alini, Mauro ;
Eglin, David ;
Armiento, Angela Rita .
AMERICAN JOURNAL OF SPORTS MEDICINE, 2020, 48 (01) :210-221
[4]   Plasma treatment in air at atmospheric pressure that enables reagent-free covalent immobilization of biomolecules on polytetrafluoroethylene (PTFE) [J].
Bilek, Marcela M. M. ;
Vandrovcova, Marta ;
Shelemin, Artem ;
Kuzminova, Anna ;
Kylian, Ondrej ;
Biederman, Hynek ;
Bacakova, Lucie ;
Weiss, Anthony S. .
APPLIED SURFACE SCIENCE, 2020, 518
[5]   Melt electrospinning today: An opportune time for an emerging polymer process [J].
Brown, Toby D. ;
Daltona, Paul D. ;
Hutmacher, Dietmar W. .
PROGRESS IN POLYMER SCIENCE, 2016, 56 :116-166
[6]   Tuning Cell Behavior on 3D Scaffolds Fabricated by Atmospheric Plasma-Assisted Additive Manufacturing [J].
Camara-Torres, Maria ;
Sinha, Ravi ;
Scopece, Paolo ;
Neubert, Thomas ;
Lachmann, Kristina ;
Patelli, Alessandro ;
Mota, Carlos ;
Moroni, Lorenzo .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (03) :3631-3644
[7]   Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration [J].
Castilho, Miguel ;
Mouser, Vivian ;
Chen, Mike ;
Malda, Jos ;
Ito, Keita .
ACTA BIOMATERIALIA, 2019, 95 :297-306
[8]   Mechanical behavior of a soft hydrogel reinforced with three-dimensional printed microfibre scaffolds [J].
Castilho, Miguel ;
Hochleitner, Gernot ;
Wilson, Wouter ;
van Rietbergen, Bert ;
Dalton, Paul D. ;
Groll, Juergen ;
Malda, Jos ;
Ito, Keita .
SCIENTIFIC REPORTS, 2018, 8
[9]   Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network [J].
Castilla-Cortazar, I. ;
Mas-Estelles, J. ;
Meseguer-Duenas, J. M. ;
Ivirico, J. L. Escobar ;
Mari, B. ;
Vidaurre, A. .
POLYMER DEGRADATION AND STABILITY, 2012, 97 (08) :1241-1248
[10]   Factors influencing the small-scale melt spinning of poly(ε-caprolactone) monofilament fibres [J].
Charuchinda, A ;
Molloy, R ;
Siripitayananon, J ;
Molloy, N ;
Sriyai, M .
POLYMER INTERNATIONAL, 2003, 52 (07) :1175-1181