Maximum Geometric Quantum Entropy

被引:4
作者
Anza, Fabio [1 ,2 ,3 ]
Crutchfield, James P. [2 ,3 ]
机构
[1] Univ Trieste, Dept Math Informat & Geosci, Via Alfonso Valerio 2, I-34127 Trieste, Italy
[2] Univ Calif Davis, Complex Sci Ctr, One Shields Ave, Davis, CA 95616 USA
[3] Univ Calif Davis, Phys Dept, One Shields Ave, Davis, CA 95616 USA
关键词
quantum mechanics; geometric quantum mechanics; maximum entropy estimation; density matrix; 05.45.-a; 89.75.Kd; 89.70.+c; 05.45.Tp; INFORMATION-THEORY; WAVE-FUNCTION; MECHANICS; SYSTEMS;
D O I
10.3390/e26030225
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Any given density matrix can be represented as an infinite number of ensembles of pure states. This leads to the natural question of how to uniquely select one out of the many, apparently equally-suitable, possibilities. Following Jaynes' information-theoretic perspective, this can be framed as an inference problem. We propose the Maximum Geometric Quantum Entropy Principle to exploit the notions of Quantum Information Dimension and Geometric Quantum Entropy. These allow us to quantify the entropy of fully arbitrary ensembles and select the one that maximizes it. After formulating the principle mathematically, we give the analytical solution to the maximization problem in a number of cases and discuss the physical mechanism behind the emergence of such maximum entropy ensembles.
引用
收藏
页数:20
相关论文
共 42 条
  • [1] Geometric quantum thermodynamics
    Anza, Fabio
    Crutchfield, James P.
    [J]. PHYSICAL REVIEW E, 2022, 106 (05)
  • [2] Quantum Information Dimension and Geometric Entropy
    Anza, Fabio
    Crutchfield, James P.
    [J]. PRX QUANTUM, 2022, 3 (02):
  • [3] Beyond density matrices: Geometric quantum states
    Anza, Fabio
    Crutchfield, James P.
    [J]. PHYSICAL REVIEW A, 2021, 103 (06)
  • [4] Eigenstate Thermalization for Degenerate Observables
    Anza, Fabio
    Gogolin, Christian
    Huber, Marcus
    [J]. PHYSICAL REVIEW LETTERS, 2018, 120 (15)
  • [5] ASHTEKAR A, 1995, AIP CONF PROC, V342, P471, DOI 10.1063/1.48786
  • [6] Ashtekar A., 1999, On Einstein's Path: Essays in Honor of Engelbert Schucking, P23, DOI DOI 10.1007/978-1-4612-1422-93
  • [7] An elementary introduction to the geometry of quantum states with pictures
    Avron, J.
    Kenneth, O.
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (02)
  • [8] Bengtsson I, 2007, AIP CONF PROC, V889, P40
  • [9] Geometric quantum mechanics
    Brody, DC
    Hughston, LP
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (01) : 19 - 53
  • [10] Information content for quantum states
    Brody, DC
    Hughston, LP
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 2586 - 2592