共 43 条
Magnetoelastic Bending and Buckling Responses of Nanoplates Resting on Elastic Foundations With Various Boundary Conditions
被引:2
作者:
Chinh, Van Minh
[1
,2
]
Mai, Dao Nhu
[3
]
Tuan, Lai Thanh
[4
]
Zenkour, Ashraf M.
[5
]
Luu, Gia Thien
[6
,7
]
机构:
[1] Vietnam Acad Sci & Technol, Grad Univ Sci & Technol, 18 Hoang Quoc Viet, Cau Giay Hanoi, Vietnam
[2] Air Force Air Def Tech Inst, Hanoi, Vietnam
[3] Vietnam Acad Sci & Technol, Inst Mech, Hanoi, Vietnam
[4] Le Quy Don Tech Univ, Fac Special Equipment, Hanoi, Vietnam
[5] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[6] Van Lang Univ, Sci & Technol Adv Inst, Lab Appl Phys, Ho Chi Minh City, Vietnam
[7] Van Lang Univ, Fac Appl Technol, Sch Technol, Ho Chi Minh City, Vietnam
关键词:
Bending;
Buckling;
Nanoplates;
Elastic foundation;
Flexomagnetic;
PLATES;
D O I:
10.1007/s42417-023-01272-1
中图分类号:
TH [机械、仪表工业];
学科分类号:
0802 ;
摘要:
PurposeThis paper proposes a novel shear deformation theory to study the static bending and buckling of nanoplates subjected to flexomagnetic influence. This is done using the revolutionary shear strain theory and establishing finite element formulations based on the finite element technique.MethodsThis study uses a finite element method to solve the nanoplate bending and buckling problem while taking into consideration the flexoelectromagnetic effect.ResultsThe investigation's novel aspects are summarized: since the flexomagnetic effect makes the plate stiffer, the maximum deflection is lowered when this effect is included. This effect also has varying influences on the plate under various boundary conditions, particularly the maximum position of the deflection, stress, Hz, and Bz responses. The thinner the plate thickness, the more pronounced the flexomagnetic effect. The flexomagnetic effect causes the thickness distribution of the stress components, Hz, and Bz to diverge from that of conventional structures (where this effect is disregarded), particularly for plates with CFFF boundary conditions. The longer the length of the compression zone increases, the lower the critical buckling load of the plate. The greater the stiffness of the elastic foundation, the better the plate can withstand compressive loads.ConclusionThe findings of this work provide a significant scientific foundation for the computation and development of nanoplates with magnetic properties. To design a structure that meets the necessary criteria, it is crucial to carefully choose geometric characteristics, boundary conditions, and stiffness parameters of the elastic foundation. According to this study, potential areas for additional research include investigating the impact of the flexomagnetic effect on nanoplates including fractures, optimizing nanostructures that exhibit flexomagnetic effects, and calculating the influence of flexomagnetic effects and temperature on nanostructures.
引用
收藏
页码:6597 / 6617
页数:21
相关论文