Empowering brain cancer diagnosis: harnessing artificial intelligence for advanced imaging insights

被引:1
作者
Al-Kadi, Omar S. [1 ]
Al-Emaryeen, Roa'a [1 ]
Al-Nahhas, Sara [1 ]
Almallahi, Isra'a [2 ]
Braik, Ruba [2 ]
Mahafza, Waleed [2 ]
机构
[1] Univ Jordan, King Abdullah II Sch Informat Technol, Amman 11942, Jordan
[2] Jordan Univ Hosp, Dept Diagnost Radiol, Amman 11942, Jordan
关键词
artificial intelligence; brain tumours; neuro-oncology; biomedical imaging; CT-MR images; CENTRAL-NERVOUS-SYSTEM; TUMOR SEGMENTATION; CLASSIFICATION; FRAMEWORK; IMAGES; RADIOMICS; HEALTH; DRIVEN; MODEL; AI;
D O I
10.1515/revneuro-2023-0115
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Artificial intelligence (AI) is increasingly being used in the medical field, specifically for brain cancer imaging. In this review, we explore how AI-powered medical imaging can impact the diagnosis, prognosis, and treatment of brain cancer. We discuss various AI techniques, including deep learning and causality learning, and their relevance. Additionally, we examine current applications that provide practical solutions for detecting, classifying, segmenting, and registering brain tumors. Although challenges such as data quality, availability, interpretability, transparency, and ethics persist, we emphasise the enormous potential of intelligent applications in standardising procedures and enhancing personalised treatment, leading to improved patient outcomes. Innovative AI solutions have the power to revolutionise neuro-oncology by enhancing the quality of routine clinical practice.
引用
收藏
页码:399 / 419
页数:21
相关论文
共 125 条
[61]   Glioma Tumors' Classification Using Deep-Neural-Network-Based Features with SVM Classifier [J].
Latif, Ghazanfar ;
Ben Brahim, Ghassen ;
Iskandar, D. N. F. Awang ;
Bashar, Abul ;
Alghazo, Jaafar .
DIAGNOSTICS, 2022, 12 (04)
[62]   Brain Tumor Segmentation with Optimized Random Forest [J].
Lefkovits, Laszlo ;
Lefkovits, Szidonia ;
Szilagyi, Laszlo .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, 2016, 2016, 10154 :88-99
[63]   CT prostate segmentation based on synthetic MRI-aided deep attention fully convolution network [J].
Lei, Yang ;
Dong, Xue ;
Tian, Zhen ;
Liu, Yingzi ;
Tian, Sibo ;
Wang, Tonghe ;
Jiang, Xiaojun ;
Patel, Pretesh ;
Jani, Ashesh B. ;
Mao, Hui ;
Curran, Walter J. ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2020, 47 (02) :530-540
[64]   MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks [J].
Lei, Yang ;
Harms, Joseph ;
Wang, Tonghe ;
Liu, Yingzi ;
Shu, Hui-Kuo ;
Jani, Ashesh B. ;
Curran, Walter J. ;
Mao, Hui ;
Liu, Tian ;
Yang, Xiaofeng .
MEDICAL PHYSICS, 2019, 46 (08) :3565-3581
[65]   A review of radiomics and genomics applications in cancers: the way towards precision medicine [J].
Li, Simin ;
Zhou, Baosen .
RADIATION ONCOLOGY, 2022, 17 (01)
[66]   A Survey of MRI-Based Brain Tumor Segmentation Methods [J].
Liu, Jin ;
Li, Min ;
Wang, Jianxin ;
Wu, Fangxiang ;
Liu, Tianming ;
Pan, Yi .
TSINGHUA SCIENCE AND TECHNOLOGY, 2014, 19 (06) :578-595
[67]   Fast and robust brain tumor segmentation using level set method with multiple image information [J].
Lok, Ka Hei ;
Shi, Lin ;
Zhu, Xianlun ;
Wang, Defeng .
JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2017, 25 (02) :301-312
[68]   The 2021 WHO Classification of Tumors of the Central Nervous System: a summary [J].
Louis, David N. ;
Perry, Arie ;
Wesseling, Pieter ;
Brat, Daniel J. ;
Cree, Ian A. ;
Figarella-Branger, Dominique ;
Hawkins, Cynthia ;
Ng, H. K. ;
Pfister, Stefan M. ;
Reifenberger, Guido ;
Soffietti, Riccardo ;
von Deimling, Andreas ;
Ellison, David W. .
NEURO-ONCOLOGY, 2021, 23 (08) :1231-1251
[69]   The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary [J].
Louis, David N. ;
Perry, Arie ;
Reifenberger, Guido ;
von Deimling, Andreas ;
Figarella-Branger, Dominique ;
Cavenee, Webster K. ;
Ohgaki, Hiroko ;
Wiestler, Otmar D. ;
Kleihues, Paul ;
Ellison, David W. .
ACTA NEUROPATHOLOGICA, 2016, 131 (06) :803-820
[70]   An overview of deep learning in medical imaging focusing on MRI [J].
Lundervold, Alexander Selvikvag ;
Lundervold, Arvid .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2019, 29 (02) :102-127