Empowering brain cancer diagnosis: harnessing artificial intelligence for advanced imaging insights

被引:1
作者
Al-Kadi, Omar S. [1 ]
Al-Emaryeen, Roa'a [1 ]
Al-Nahhas, Sara [1 ]
Almallahi, Isra'a [2 ]
Braik, Ruba [2 ]
Mahafza, Waleed [2 ]
机构
[1] Univ Jordan, King Abdullah II Sch Informat Technol, Amman 11942, Jordan
[2] Jordan Univ Hosp, Dept Diagnost Radiol, Amman 11942, Jordan
关键词
artificial intelligence; brain tumours; neuro-oncology; biomedical imaging; CT-MR images; CENTRAL-NERVOUS-SYSTEM; TUMOR SEGMENTATION; CLASSIFICATION; FRAMEWORK; IMAGES; RADIOMICS; HEALTH; DRIVEN; MODEL; AI;
D O I
10.1515/revneuro-2023-0115
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Artificial intelligence (AI) is increasingly being used in the medical field, specifically for brain cancer imaging. In this review, we explore how AI-powered medical imaging can impact the diagnosis, prognosis, and treatment of brain cancer. We discuss various AI techniques, including deep learning and causality learning, and their relevance. Additionally, we examine current applications that provide practical solutions for detecting, classifying, segmenting, and registering brain tumors. Although challenges such as data quality, availability, interpretability, transparency, and ethics persist, we emphasise the enormous potential of intelligent applications in standardising procedures and enhancing personalised treatment, leading to improved patient outcomes. Innovative AI solutions have the power to revolutionise neuro-oncology by enhancing the quality of routine clinical practice.
引用
收藏
页码:399 / 419
页数:21
相关论文
共 125 条
[31]   Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? [J].
Davnall F. ;
Yip C.S.P. ;
Ljungqvist G. ;
Selmi M. ;
Ng F. ;
Sanghera B. ;
Ganeshan B. ;
Miles K.A. ;
Cook G.J. ;
Goh V. .
Insights into Imaging, 2012, 3 (6) :573-589
[32]  
Depeursinge A, 2017, ELS MIC SOC BOOK SER, P1
[33]  
Di Franco G., 2021, Qual. Quant, V55, P1007, DOI [10.1007/s11135-020-01037-y, DOI 10.1007/S11135-020-01037-Y]
[34]  
Di Ieva A, 2016, SPR SER COMPUT NEURO, P393, DOI 10.1007/978-1-4939-3995-4_24
[35]   ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data [J].
Diakogiannis, Foivos, I ;
Waldner, Francois ;
Caccetta, Peter ;
Wu, Chen .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 :94-114
[36]   A Deep Learning Approach for Brain Tumor Classification and Segmentation Using a Multiscale Convolutional Neural Network [J].
Diaz-Pernas, Francisco Javier ;
Martinez-Zarzuela, Mario ;
Anton-Rodriguez, Miriam ;
Gonzalez-Ortega, David .
HEALTHCARE, 2021, 9 (02)
[37]  
Dilruba RA, 2006, ICECE 2006: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, P451
[38]   Primary lymphoma of the central nervous system: Typical and atypical CT and MR imaging appearances [J].
Erdag, N ;
Bhorade, RM ;
Alberico, RA ;
Yousuf, N ;
Patel, MR .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2001, 176 (05) :1319-1326
[39]   Deep Learning-Based Concurrent Brain Registration and Tumor Segmentation [J].
Estienne, Theo ;
Lerousseau, Marvin ;
Vakalopoulou, Maria ;
Andres, Emilie Alvarez ;
Battistella, Enzo ;
Carre, Alexandre ;
Chandra, Siddhartha ;
Christodoulidis, Stergios ;
Sahasrabudhe, Mihir ;
Sun, Roger ;
Robert, Charlotte ;
Talbot, Hugues ;
Paragios, Nikos ;
Deutsch, Eric .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2020, 14
[40]   BIRNet: Brain image registration using dual-supervised fully convolutional networks [J].
Fan, Jingfan ;
Cao, Xiaohuan ;
Yap, Pew-Thian ;
Shen, Dinggang .
MEDICAL IMAGE ANALYSIS, 2019, 54 :193-206