Spin-Orbit Torque and Geometrical Backscattering

被引:0
|
作者
Tan, Seng Ghee [1 ]
Huang, Che-Chun [2 ]
Jalil, Mansoor B. A. [3 ]
Chang, Ching-Ray [2 ,4 ]
Cheng, Szu-Cheng [1 ,5 ]
机构
[1] Chinese Culture Univ, Dept Optoelect Phys, 55 Hwa Kang Rd, Taipei 11114, Taiwan
[2] Natl Taiwan Univ, Dept Phys, Roosevelt Rd, Taipei 10617, Taiwan
[3] Natl Univ Singapore, Dept Elect & Comp Engn, 4 Engn Dr 3, Singapore 117576, Singapore
[4] Chung Yuan Christian Univ, Quantum Informat Ctr, Zhongbei Rd, Taoyuan City, Taiwan
[5] Natl Cent Univ, Dept Phys, 300 Zhongda Rd, Taoyuan City 320317, Taiwan
关键词
Curved space; spin-orbit coupling; spin torque;
D O I
10.1142/S2010324723500339
中图分类号
O59 [应用物理学];
学科分类号
摘要
We show in this paper that the technologically relevant field-like spin-orbit torque (SOT) shows resilience against the geometrical effect of electron backscattering. As a device grows smaller in size, the effect of geometry on physical properties like spin torque, and hence switching current could place a physical limit on the continued shrinkage of such a device - a necessary trend of all memory devices (MRAM). The geometrical effect of curves has been shown to impact quantum transport and topological transition of Dirac and topological systems. In our work, we have ruled out the potential threat of line curves degrading the effectiveness of SOT switching. In other words, SOT switching will be resilient against the influence of curves that line the circumferences of defects in the events of electron backscattering, which commonly happens in the channel of modern electronic devices.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Thermal spin-orbit torque with Dresselhaus spin-orbit coupling
    Xue, Chun-Yi
    Wang, Ya-Ru
    Wang, Zheng-Chuan
    EUROPEAN PHYSICAL JOURNAL B, 2024, 97 (02):
  • [2] Spin-orbit torque in antiferromagnets
    Song, C.
    Zhou, X.
    Chen, X.
    Zhang, P.
    Shi, G.
    Pan, F.
    2018 IEEE INTERNATIONAL MAGNETIC CONFERENCE (INTERMAG), 2018,
  • [3] Interfacial spin-orbit torque without bulk spin-orbit coupling
    Emori, Satoru
    Nan, Tianxiang
    Belkessam, Amine M.
    Wang, Xinjun
    Matyushov, Alexei D.
    Babroski, Christopher J.
    Gao, Yuan
    Lin, Hwaider
    Sun, Nian X.
    PHYSICAL REVIEW B, 2016, 93 (18)
  • [4] Manipulation of Magnetization by Spin-Orbit Torque
    Li, Yucai
    Edmonds, Kevin William
    Liu, Xionghua
    Zheng, Houzhi
    Wang, Kaiyou
    ADVANCED QUANTUM TECHNOLOGIES, 2019, 2 (1-2)
  • [5] Flexible spin-orbit torque devices
    Lee, OukJae
    You, Long
    Jang, Jaewon
    Subramanian, Vivek
    Salahuddin, Sayeef
    APPLIED PHYSICS LETTERS, 2015, 107 (25)
  • [6] Spin-orbit torque characterization in a nutshell
    Nguyen, Minh-Hai
    Pai, Chi-Feng
    APL MATERIALS, 2021, 9 (03)
  • [7] Thermal spin-orbit torque in spintronics
    Wang, Zheng-Chuan
    EUROPEAN PHYSICAL JOURNAL B, 2022, 95 (01):
  • [8] Multilevel Spin-Orbit Torque MRAMs
    Kim, Yusung
    Fong, Xuanyao
    Kwon, Kon-Woo
    Chen, Mei-Chin
    Roy, Kaushik
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2015, 62 (02) : 561 - 568
  • [9] Giant, Linearly Increasing Spin-Orbit Torque Efficiency in Symmetry-Broken Spin-Orbit Torque Superlattices
    Lin, Xin
    Zhu, Lujun
    Liu, Qianbiao
    Zhu, Lijun
    NANO LETTERS, 2023, 23 (20) : 9420 - 9427
  • [10] Intrinsic spin torque without spin-orbit coupling
    Kim, Kyoung-Whan
    Lee, Kyung-Jin
    Lee, Hyun-Woo
    Stiles, M. D.
    PHYSICAL REVIEW B, 2015, 92 (22)