Engineered CO2 conversion performance of nanostructured TiO2 photocatalysts via electrochemical hydrogenation

被引:3
作者
Lee, Jacky Chen-Chin [1 ]
Omr, Hossam A. E. [1 ]
Lai, Po-Wei [1 ]
Lee, Hyeonseok [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Photon, Kaohsiung 80424, Taiwan
关键词
NANOTUBE ARRAYS; DOPED TIO2; RAMAN-SPECTRUM; NANOPARTICLES; REDUCTION; FILMS; TEMPERATURE;
D O I
10.1039/d3cy01414b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modification of TiO2 by the hydrogenation process is one of the promising ways to achieve favorable properties for efficient photocatalytic CO2 conversion but typical chemical hydrogenation methods such as H-2 thermal treatment and the use of hydrides are not easy to control for practical application. Moreover, the study on the applications to photocatalytic CO2 conversion by using electrochemically hydrogenated TiO2 nanotubes (TNTs) has not been fully implemented. In this work, we demonstrate the fabrication of hydrogenated TiO2 nanotubes (TNTs) via an electrochemical method for photocatalytic CO2 conversion. The hydrogenated TNT surface is well-controlled in a few nm regime, with varied reaction voltages. The hydrogenated TNT photocatalysts display a remarkable production rate of 0.57 mu mol cm(-2) h(-1) (= ca. 297 mu mol g(-1) h(-1)) of CH4, which is four times higher than that by bare TNT. These significantly enhanced photocatalytic performances are attributed to the synergistic effects of hydrogenated nanostructures of the TiO2 surface, which represent enhanced light absorption, highly ordered nanostructures, and improved electrical properties due to the electrochemical hydrogenation.
引用
收藏
页码:767 / 774
页数:8
相关论文
共 50 条
[41]   Solvent Free Synthesis of PdZn/TiO2 Catalysts for the Hydrogenation of CO2 to Methanol [J].
Bahruji, Hasliza ;
Esquius, Jonathan Ruiz ;
Bowker, Michael ;
Hutchings, Graham ;
Armstrong, Robert D. ;
Jones, Wilm .
TOPICS IN CATALYSIS, 2018, 61 (3-4) :144-153
[42]   Deactivation and Stabilization Mechanism of Photothermal CO2 Hydrogenation over Black TiO2 [J].
Li, Yang ;
Zeng, Zhaojian ;
Zhang, Yuanming ;
Chen, Yong ;
Wang, Wenjing ;
Xu, Xiaoming ;
Du, Mengyang ;
Li, Zhaosheng ;
Zou, Zhigang .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (19) :6382-6388
[43]   Coupling electrochemical CO2 conversion with CO2 capture [J].
Sullivan, Ian ;
Goryachev, Andrey ;
Digdaya, Ibadillah A. ;
Li, Xueqian ;
Atwater, Harry A. ;
Vermaas, David A. ;
Xiang, Chengxiang .
NATURE CATALYSIS, 2021, 4 (11) :952-958
[44]   Size-dependent photocatalytic reduction of CO2 with PbS quantum dot sensitized TiO2 heterostructured photocatalysts [J].
Wang, Congjun ;
Thompson, Robert L. ;
Ohodnicki, Paul ;
Baltrus, John ;
Matranga, Christopher .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (35) :13452-13457
[45]   Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation [J].
Xia, Ting ;
Zhang, Chi ;
Oyler, Nathan A. ;
Chen, Xiaobo .
JOURNAL OF MATERIALS RESEARCH, 2014, 29 (18) :2198-2210
[46]   TiO2 hybrid material film with high CO2 adsorption for CO2 photoreduction [J].
Huang, Zhengfeng ;
Xue, Kaiming ;
Zhang, Yanzhao ;
Cheng, Xudong ;
Dong, Peimei ;
Zhang, Xiwen .
JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 729 :884-889
[47]   Selective hydrogenation via cascade catalysis on amorphous TiO2 [J].
Qiao, Simeng ;
Zhou, Yuanyi ;
Hao, Hongchang ;
Liu, Xuechen ;
Zhang, Ling ;
Wang, Wenzhong .
GREEN CHEMISTRY, 2019, 21 (24) :6585-6589
[48]   Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol [J].
Yang, Hsien-Chang ;
Lin, Hsin-Yu ;
Chien, Yu-Shiang ;
Wu, Jeffrey Chi-Sheng ;
Wu, Hsin-Hsien .
CATALYSIS LETTERS, 2009, 131 (3-4) :381-387
[49]   Comparison of CO2 Reduction Performance with NH3 and H2O between Cu/TiO2 and Pd/TiO2 [J].
Nishimura, Akira ;
Shimada, Ryouga ;
Sakakibara, Yoshito ;
Koshio, Akira ;
Hu, Eric .
MOLECULES, 2021, 26 (10)
[50]   Scaling the Electrochemical Conversion of CO2 to CO [J].
Han, Kai ;
Rowley, Ben C. ;
Schellekens, Maarten P. ;
Brugman, Sander ;
de Heer, Michiel P. ;
Keyzer, Lucas P. S. ;
Corbett, Paul J. .
ACS ENERGY LETTERS, 2024, 9 (06) :2800-2806