On the average hitting times of Cay(ZN, {+1,+2})

被引:0
|
作者
Tanaka, Yuuho [1 ]
机构
[1] Waseda Univ, Grad Sch Sci & Engn, Tokyo 1698555, Japan
关键词
Simple random walk; Hitting time; Cayley graph; Jacobsthal number;
D O I
10.1016/j.dam.2023.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exact formula for the average hitting time (HT, as an abbreviation) of simple random walks on Cay(ZN, {+1, +2}) was given by Y. Doi et al.. Y. Doi et al. give a simple formula for the HT's of simple random walks on Cay(ZN, {+1, +2}) by using an elementary method. In this paper, using an elementary method also used by Y. Doi et al., we give a simple formula for HT's of simple random walks on Cay(ZN, {+1, +2}).(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [31] Hitting times for random walks on subdivision and triangulation graphs
    Chen, Haiyan
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (01) : 117 - 130
  • [32] Convergence Rates in Uniform Ergodicity by Hitting Times and L2-Exponential Convergence Rates
    Mao, Yong-Hua
    Wang, Tao
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (04) : 2690 - 2711
  • [33] Hitting Times of Points and Intervals for Symmetric L,vy Processes
    Grzywny, Tomasz
    Ryznar, Michal
    POTENTIAL ANALYSIS, 2017, 46 (04) : 739 - 777
  • [34] Hitting Times of Random Walks on Edge Corona Product Graphs
    Zhu, Mingzhe
    Xu, Wanyue
    Li, Wei
    Zhang, Zhongzhi
    Kan, Haibin
    COMPUTER JOURNAL, 2024, 67 (02) : 485 - 497
  • [35] Asymptotics of the probability distributions of the first hitting times of Bessel processes
    Hamana, Yuji
    Matsumoto, Hiroyuki
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2014, 19 : 1 - 5
  • [36] Expected hitting times for random walks on quadrilateral graphs and their applications
    Huang, Jing
    Li, Shuchao
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (12) : 2389 - 2408
  • [37] Precise Asymptotic Formulae for the First Hitting Times of Bessel Processes
    Hamana, Yuji
    Matsumoto, Hiroyuki
    TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (02) : 603 - 615
  • [38] Hitting Times of Points and Intervals for Symmetric Lévy Processes
    Tomasz Grzywny
    Michał Ryznar
    Potential Analysis, 2017, 46 : 739 - 777
  • [39] Hitting times of quantum and classical random walks in potential spaces
    Varsamis, Georgios D.
    Karafyllidis, Ioannis G.
    Sirakoulis, Georgios Ch.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 606
  • [40] THE LAPLACE TRANSFORM OF HITTING TIMES OF INTEGRATED GEOMETRIC BROWNIAN MOTION
    Metzler, Adam
    JOURNAL OF APPLIED PROBABILITY, 2013, 50 (01) : 295 - 299