On the average hitting times of Cay(ZN, {+1,+2})

被引:0
|
作者
Tanaka, Yuuho [1 ]
机构
[1] Waseda Univ, Grad Sch Sci & Engn, Tokyo 1698555, Japan
关键词
Simple random walk; Hitting time; Cayley graph; Jacobsthal number;
D O I
10.1016/j.dam.2023.11.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The exact formula for the average hitting time (HT, as an abbreviation) of simple random walks on Cay(ZN, {+1, +2}) was given by Y. Doi et al.. Y. Doi et al. give a simple formula for the HT's of simple random walks on Cay(ZN, {+1, +2}) by using an elementary method. In this paper, using an elementary method also used by Y. Doi et al., we give a simple formula for HT's of simple random walks on Cay(ZN, {+1, +2}).(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:269 / 276
页数:8
相关论文
共 50 条
  • [21] On the Hitting Times of Quantum Versus Random Walks
    Frédéric Magniez
    Ashwin Nayak
    Peter C. Richter
    Miklos Santha
    Algorithmica, 2012, 63 : 91 - 116
  • [22] Hitting times for random walks on tricyclic graphs
    Zhu, Xiao-Min
    Yang, Xu
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2023, 20 (01) : 65 - 72
  • [23] Hitting Times and Probabilities for Imprecise Markov Chains
    Krak, Thomas
    T'Joens, Natan
    De Bock, Jasper
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES: THEORIES AND APPLICATIONS (ISIPTA 2019), 2019, 103 : 265 - 275
  • [24] Diffusion hitting times and the bell-shape
    Jedidi, Wissem
    Simon, Thomas
    STATISTICS & PROBABILITY LETTERS, 2015, 102 : 38 - 41
  • [25] AN ASYMPTOTIC SUFFICIENCY PROPERTY OF OBSERVATIONS RELATED TO THE 1ST HITTING TIMES OF A DIFFUSION
    GENONCATALOT, V
    LAREDO, C
    STATISTICS & PROBABILITY LETTERS, 1990, 9 (03) : 253 - 258
  • [26] THE METRIC DIMENSION OF BARYCENTRIC SUBDIVISION OF CAYLEY GRAPHS Cay(Zn ⊕ Zm)
    Ahmad, A.
    Imran, M.
    Al-Mushayt, O.
    Bokhary, S. A. U. H.
    MISKOLC MATHEMATICAL NOTES, 2015, 16 (02) : 637 - 646
  • [27] ASYMPTOTIC EXPANSIONS FOR THE FIRST HITTING TIMES OF BESSEL PROCESSES
    Hamana, Yuji
    Kaikura, Ryo
    Shinozaki, Kosuke
    OPUSCULA MATHEMATICA, 2021, 41 (04) : 509 - 537
  • [28] An Explicit Formula of Hitting Times for Random Walks on Graphs
    Xu, Hao
    Yau, Shing-Tung
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2014, 10 (03) : 567 - 581
  • [29] Extremal hitting times of trees with some given parameters
    Zhang, Huihui
    Li, Shuchao
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (11) : 2127 - 2149
  • [30] ASYMPTOTIC DISTRIBUTION OF HITTING TIMES FOR CRITICAL MAPS OF THE CIRCLE
    Ayupov, Sh A.
    Zhalilov, A. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2021, 31 (03): : 365 - 383