Quasi-thermal Noise Spectroscopy Analysis of Parker Solar Probe Data: Improved Electron Density Model for Solar Wind

被引:9
|
作者
Kruparova, Oksana [1 ,2 ]
Krupar, Vratislav [1 ,2 ]
Szabo, Adam [2 ]
Pulupa, Marc [3 ]
Bale, Stuart D. [3 ,4 ]
机构
[1] Univ Maryland, Goddard Planetary Heliophys Inst, Baltimore, MD 21250 USA
[2] NASA, Goddard Space Flight Ctr, Heliophys Div, Heliospher Phys Lab, Greenbelt, MD 20771 USA
[3] Univ Calif Berkeley, Space Sci Lab, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Phys Dept, Berkeley, CA 94720 USA
关键词
CORONA;
D O I
10.3847/1538-4357/acf572
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a comprehensive analysis of electron density measurements in the solar wind using quasi-thermal noise (QTN) spectroscopy applied to data from the first 15 encounters of the Parker Solar Probe mission (2018 November-2023 March). Our methodology involves the identification of the plasma line frequency and the calculation of plasma density based on in situ measurements. By analyzing over 2.1 million data points, we derive a power-law model for electron density as a function of radial distance from the Sun in the range of 13 to 50 R-circle dot: n(e)(r) = (343,466 +/- 19921) x r((-1.87 +/- 0.11)). This model provides improved estimates for localizing interplanetary solar radio bursts. Moreover, obtained electron densities can be used for calibrating particle instruments on board the Parker Solar Probe. We discuss its limitations and potential for further refinement with additional Parker Solar Probe encounters.
引用
收藏
页数:6
相关论文
共 5 条
  • [1] Total electron temperature derived from quasi-thermal noise spectroscopy in the pristine solar wind from Parker Solar Probe observations
    Liu, M.
    Issautier, K.
    Moncuquet, M.
    Meyer-Vernet, N.
    Maksimovic, M.
    Huang, J.
    Martinovic, M. M.
    Griton, L.
    Chrysaphi, N.
    Jagarlamudi, V. K.
    Bale, S. D.
    Pulupa, M.
    Kasper, J. C.
    Stevens, M. L.
    ASTRONOMY & ASTROPHYSICS, 2023, 674
  • [2] Density Fluctuations in the Solar Wind Based on Type III Radio Bursts Observed by Parker Solar Probe
    Krupar, Vratislav
    Szabo, Adam
    Maksimovic, Milan
    Kruparova, Oksana
    Kontar, Eduard P.
    Balmaceda, Laura A.
    Bonnin, Xavier
    Bale, Stuart D.
    Pulupa, Marc
    Malaspina, David M.
    Bonnell, John W.
    Harvey, Peter R.
    Goetz, Keith
    de Wit, Thierry Dudok
    MacDowall, Robert J.
    Kasper, Justin C.
    Case, Anthony W.
    Korreck, Kelly E.
    Larson, Davin E.
    Livi, Roberto
    Stevens, Michael L.
    Whittlesey, Phyllis L.
    Hegedus, Alexander M.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)
  • [3] The Opposite Behaviors of Proton and Electron Temperatures in Relation to Solar Wind Magnetic Energy: Parker Solar Probe Observations
    Zhao, G. Q.
    Feng, H. Q.
    Wu, D. J.
    Xiang, L.
    Yang, H. F.
    Liu, Q.
    Ren, D. Y.
    ASTROPHYSICAL JOURNAL, 2024, 966 (01)
  • [4] Solar-wind predictions for the Parker Solar Probe orbit Near-Sun extrapolations derived from an empirical solar-wind model based on Helios and OMNI observations
    Venzmer, M. S.
    Bothmer, V.
    ASTRONOMY & ASTROPHYSICS, 2018, 611
  • [5] The Role of Alfven Wave Dynamics on the Large-scale Properties of the Solar Wind: Comparing an MHD Simulation with Parker Solar Probe E1 Data
    Reville, Victor
    Velli, Marco
    Panasenco, Olga
    Tenerani, Anna
    Shi, Chen
    Badman, Samuel T.
    Bale, Stuart D.
    Kasper, J. C.
    Stevens, Michael L.
    Korreck, Kelly E.
    Bonnell, J. W.
    Case, Anthony W.
    de Wit, Thierry Dudok
    Goetz, Keith
    Harvey, Peter R.
    Larson, Davin E.
    Livi, Roberto
    Malaspina, David M.
    MacDowall, Robert J.
    Pulupa, Marc
    Whittlesey, Phyllis L.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 246 (02)