Theoretical modeling and machine learning-based data processing workflows in comprehensive two-dimensional gas chromatography-A review

被引:4
作者
Gaida, Meriem [1 ]
Stefanuto, Pierre-Hugues [1 ]
Focant, Jean-Francois [1 ]
机构
[1] Univ Liege, Organ & Biol Analyt Chem Grp OBIACHEM, MolSys Res Unit, Liege, Belgium
关键词
Comprehensive two-dimensional gas chroma-tography; Method development; Modeling; Data processing; Machine Learning; RETENTION TIME PREDICTION; MASS-SPECTROMETRY; FEATURE-SELECTION; PATTERN-RECOGNITION; THERMODYNAMIC DATA; RANDOM FORESTS; INDEX DATA; OPTIMIZATION; SEPARATIONS; CLASSIFICATION;
D O I
10.1016/j.chroma.2023.464467
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
In recent years, comprehensive two-dimensional gas chromatography (GC x GC) has been gradually gaining prominence as a preferred method for the analysis of complex samples due to its higher peak capacity and resolution power compared to conventional gas chromatography (GC). Nonetheless, to fully benefit from the capabilities of GC x GC, a holistic approach to method development and data processing is essential for a successful and informative analysis. Method development enables the fine-tuning of the chromatographic sep-aration, resulting in high-quality data. While generating such data is pivotal, it does not necessarily guarantee that meaningful information will be extracted from it. To this end, the first part of this manuscript reviews the importance of theoretical modeling in achieving good optimization of the separation conditions, ultimately improving the quality of the chromatographic separation. Multiple theoretical modeling approaches are discussed, with a special focus on thermodynamic-based modeling. The second part of this review highlights the importance of establishing robust data processing workflows, with a special emphasis on the use of advanced data processing tools such as, Machine Learning (ML) algorithms. Three widely used ML algorithms are dis-cussed: Random Forest (RF), Support Vector Machine (SVM), and Partial Least Square-Discriminate Analysis (PLS-DA), highlighting their role in discovery-based analysis.
引用
收藏
页数:15
相关论文
共 126 条
[1]   Prediction of retention times of polycyclic aromatic hydrocarbons and n-alkanes in temperature-programmed gas chromatography [J].
Aldaeus, Fredrik ;
Thewalim, Yasar ;
Colmsjo, Anders .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 389 (03) :941-950
[2]   Discriminating Lacustrine and Marine Organic Matter Depositional Paleoenvironments of Brazilian Crude Oils Using Comprehensive Two-Dimensional Gas Chromatography-Quadrupole Mass Spectrometry and Supervised Classification Chemometric Approaches [J].
Alexandrino, Guilherme L. ;
Prata, Paloma S. ;
Augusto, Fabio .
ENERGY & FUELS, 2017, 31 (01) :170-178
[3]   Metabolome-based signature of disease pathology in MS [J].
Andersen, S. L. ;
Briggs, F. B. S. ;
Winnike, J. H. ;
Natanzon, Y. ;
Maichle, S. ;
Knagge, K. J. ;
Newby, L. K. ;
Gregory, S. G. .
MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2019, 31 :12-21
[4]   Using comprehensive two-dimensional gas chromatography retention indices to estimate environmental partitioning properties for a complete set of diesel fuel hydrocarbons [J].
Arey, JS ;
Nelson, RK ;
Xu, L ;
Reddy, CM .
ANALYTICAL CHEMISTRY, 2005, 77 (22) :7172-7182
[5]   Global metabolome analysis of Dunaliella tertiolecta, Phaeobacter italicus R11 Co-cultures using thermal desorption- Comprehensive two-dimensional gas chromatography- Time-of-flight mass spectrometry (TD-GCxGC-TOFMS) [J].
Armstrong, Michael D. Sorochan ;
Campos, O. Rene Arredondo ;
Bannon, Catherine C. ;
de la Mata, A. Paulina ;
Case, Rebecca J. ;
Harynuk, James J. .
PHYTOCHEMISTRY, 2022, 195
[6]   Metabolomics Diagnosis of COVID-19 from Exhaled Breath Condensate [J].
Barberis, Elettra ;
Amede, Elia ;
Khoso, Shahzaib ;
Castello, Luigi ;
Sainaghi, Pier Paolo ;
Bellan, Mattia ;
Balbo, Piero Emilio ;
Patti, Giuseppe ;
Brustia, Diego ;
Giordano, Mara ;
Rolla, Roberta ;
Chiocchetti, Annalisa ;
Romani, Giorgia ;
Manfredi, Marcello ;
Vaschetto, Rosanna .
METABOLITES, 2021, 11 (12)
[7]   Retention time prediction in temperature-programmed, comprehensive two-dimensional gas chromatography: Modeling and error assessment [J].
Barcaru, Andrei ;
Anroedh-Sampat, Andjoe ;
Janssen, Hans-Gerd ;
Vivo-Truyols, Gabriel .
JOURNAL OF CHROMATOGRAPHY A, 2014, 1368 :190-198
[8]   History of gas chromatography [J].
Bartle, KD ;
Myers, P .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2002, 21 (9-10) :547-557
[9]   Investigating Bacterial Volatilome for the Classification and Identification of Mycobacterial Species by HS-SPME-GC-MS and Machine Learning [J].
Beccaria, Marco ;
Franchina, Flavio A. ;
Nasir, Mavra ;
Mellors, Theodore ;
Hill, Jane E. ;
Purcaro, Giorgia .
MOLECULES, 2021, 26 (15)
[10]   Exhaled human breath analysis in active pulmonary tuberculosis diagnostics by comprehensive gas chromatography-mass spectrometry and chemometric techniques [J].
Beccaria, Marco ;
Bobak, Carly ;
Maitshotlo, Boitumelo ;
Mellors, Theodore R. ;
Purcaro, Giorgia ;
Franchina, Flavio A. ;
Rees, Christiaan A. ;
Nasir, Mavra ;
Black, Andrew ;
Hill, Jane E. .
JOURNAL OF BREATH RESEARCH, 2019, 13 (01)