Exploiting ion-mobility mass spectrometry for unraveling proteome complexity

被引:1
作者
Perchepied, Stan [1 ]
Zhou, Zhuoheng [1 ]
Mitulovic, Goran [2 ]
Eeltink, Sebastiaan [1 ,3 ]
机构
[1] Vrije Univ Brussel VUB, Dept Chem Engn, Brussels, Belgium
[2] Bruker Daltonics Inc, Vienna, Austria
[3] Pl Laan 2, B-1050 Brussels, Belgium
关键词
clinical proteomics; data-independent acquisition; parallel accumulation-serial fragmentation; single-cell analysis; TIMS-TOF; IDENTIFICATION; FUNDAMENTALS; SEPARATION; ELECTROPHORESIS; SENSITIVITY; RESOLUTION; PROTEINS; SEQUENCE; GLYCAN; POWER;
D O I
10.1002/jssc.202300512
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ion mobility spectrometry-mass spectrometry (IMS-MS) is experiencing rapid growth in proteomic studies, driven by its enhancements in dynamic range and throughput, increasing the quantitation precision, and the depth of proteome coverage. The core principle of ion mobility spectrometry is to separate ions in an inert gas under the influence of an electric field based on differences in drift time. This minireview provides an introduction to IMS operation modes and a description of advantages and limitations is presented. Moreover, the principles of trapped IMS-MS (TIMS-MS), including parallel accumulation-serial fragmentation are discussed. Finally, emerging applications linked to TIMS focusing on sample throughput (in clinical proteomics) and sensitivity (single-cell proteomics) are reviewed, and the possibilities of intact protein analysis are discussed.
引用
收藏
页数:16
相关论文
共 50 条
[21]   Trapped Ion Mobility Spectrometry Reduces Spectral Complexity in Mass Spectrometry-Based Proteomics [J].
Charkow, Joshua ;
Rost, Hannes L. .
ANALYTICAL CHEMISTRY, 2021, 93 (50) :16751-16758
[22]   Exploring the Complexity of Steviol Glycosides Analysis Using Ion Mobility Mass Spectrometry [J].
McCullagh, Michael ;
Douce, David ;
Van Hoeck, Els ;
Goscinny, Severine .
ANALYTICAL CHEMISTRY, 2018, 90 (07) :4585-4595
[23]   Recent developments in data acquisition, treatment and analysis with ion mobility-mass spectrometry for lipidomics [J].
Moran-Garrido, Maria ;
Camunas-Alberca, Sandra. M. ;
Gil-de-la Fuente, Alberto ;
Mariscal, Antonio ;
Gradillas, Ana ;
Barbas, Coral ;
Saiz, Jorge .
PROTEOMICS, 2022, 22 (15-16)
[24]   Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology [J].
Mu, Yuqing ;
Schulz, Benjamin L. ;
Ferro, Vito .
MOLECULES, 2018, 23 (10)
[25]   Laserspray Ionization (LSI) Ion Mobility Spectrometry (IMS) Mass Spectrometry [J].
Inutan, Ellen ;
Trimpin, Sarah .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2010, 21 (07) :1260-1264
[26]   Coupling trapped ion mobility spectrometry to mass spectrometry: trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry [J].
Tose, Lilian V. ;
Benigni, Paolo ;
Leyva, Dennys ;
Sundberg, Abigail ;
Ramirez, Cesar E. ;
Ridgeway, Mark E. ;
Park, Melvin A. ;
Romao, Wanderson ;
Jaffe, Rudolf ;
Fernandez-Lima, Francisco .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2018, 32 (15) :1287-1295
[27]   Trends in trapped ion mobility - Mass spectrometry instrumentation [J].
Ridgeway, Mark E. ;
Bleiholder, Christian ;
Mann, Matthias ;
Park, Melvin A. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2019, 116 :324-331
[28]   Glycan Analysis by Ion Mobility-Mass Spectrometry [J].
Hofmann, Johanna ;
Pagel, Kevin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (29) :8342-8349
[29]   Unraveling altered RNA metabolism in pancreatic cancer cells by liquid-chromatography coupling to ion mobility mass spectrometry [J].
Lagies, Simon ;
Schlimpert, Manuel ;
Braun, Lukas M. ;
Kather, Michel ;
Plagge, Johannes ;
Erbes, Thalia ;
Wittel, Uwe A. ;
Kammerer, Bernd .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2019, 411 (24) :6319-6328
[30]   Glycoprotein analysis using mass spectrometry: unraveling the layers of complexity [J].
John E. Schiel .
Analytical and Bioanalytical Chemistry, 2012, 404 :1141-1149