Exploiting ion-mobility mass spectrometry for unraveling proteome complexity

被引:1
作者
Perchepied, Stan [1 ]
Zhou, Zhuoheng [1 ]
Mitulovic, Goran [2 ]
Eeltink, Sebastiaan [1 ,3 ]
机构
[1] Vrije Univ Brussel VUB, Dept Chem Engn, Brussels, Belgium
[2] Bruker Daltonics Inc, Vienna, Austria
[3] Pl Laan 2, B-1050 Brussels, Belgium
关键词
clinical proteomics; data-independent acquisition; parallel accumulation-serial fragmentation; single-cell analysis; TIMS-TOF; IDENTIFICATION; FUNDAMENTALS; SEPARATION; ELECTROPHORESIS; SENSITIVITY; RESOLUTION; PROTEINS; SEQUENCE; GLYCAN; POWER;
D O I
10.1002/jssc.202300512
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Ion mobility spectrometry-mass spectrometry (IMS-MS) is experiencing rapid growth in proteomic studies, driven by its enhancements in dynamic range and throughput, increasing the quantitation precision, and the depth of proteome coverage. The core principle of ion mobility spectrometry is to separate ions in an inert gas under the influence of an electric field based on differences in drift time. This minireview provides an introduction to IMS operation modes and a description of advantages and limitations is presented. Moreover, the principles of trapped IMS-MS (TIMS-MS), including parallel accumulation-serial fragmentation are discussed. Finally, emerging applications linked to TIMS focusing on sample throughput (in clinical proteomics) and sensitivity (single-cell proteomics) are reviewed, and the possibilities of intact protein analysis are discussed.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Ion-Mobility Mass Spectrometry in Metabolomics and Lipidomics
    Astarita, Giuseppe
    Paglia, Giuseppe
    Yu, Kate
    LC GC EUROPE, 2015, 28 (09) : 520 - +
  • [2] Ion-Mobility Mass Spectrometry in Metabolomics and Lipidomics
    Astarita, Giuseppe
    Paglia, Giuseppe
    Yu, Kate
    LC GC NORTH AMERICA, 2015, 33 (09) : 702 - +
  • [3] Ion-mobility spectrometry for environmental analysis
    Marquez-Sillero, Isabel
    Aguilera-Herrador, Eva
    Cardenas, Soledad
    Valcarcel, Miguel
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2011, 30 (05) : 677 - 690
  • [4] Differential Ion Mobility-Mass Spectrometry for Detailed Analysis of the Proteome
    Winter, Daniel L.
    Wilkins, Marc R.
    Donald, William A.
    TRENDS IN BIOTECHNOLOGY, 2019, 37 (02) : 198 - 213
  • [5] An economical setup for atmospheric pressure chemical ionization drift tube ion-mobility mass spectrometry
    Raju, Chamarthi Maheswar
    Buchowiecki, Krzysztof
    Urban, Pawel L.
    ANALYTICA CHIMICA ACTA, 2023, 1268
  • [6] The application of ion mobility mass spectrometry to metabolomics
    Zhang, Xing
    Quinn, Kevin
    Cruickshank-Quinn, Charmion
    Reisdorph, Richard
    Reisdorph, Nichole
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2018, 42 : 60 - 66
  • [7] Mechanical ion gate for electrospray-ionization ion-mobility spectrometry
    Zhou, Li
    Collins, David C.
    Lee, Edgar D.
    Lee, Milton L.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2007, 388 (01) : 189 - 194
  • [8] Mechanical ion gate for electrospray-ionization ion-mobility spectrometry
    Li Zhou
    David C. Collins
    Edgar D. Lee
    Milton L. Lee
    Analytical and Bioanalytical Chemistry, 2007, 388 : 189 - 194
  • [9] Molecular Insights into the Thermal Stability of mAbs with Variable-Temperature Ion-Mobility Mass Spectrometry
    Pacholarz, Kamila J.
    Peters, Shirley J.
    Garlish, Rachel A.
    Henry, Alistair J.
    Taylor, Richard J.
    Humphreys, David P.
    Barran, Perdita E.
    CHEMBIOCHEM, 2016, 17 (01) : 46 - 51
  • [10] Ambient Pressure Inverse Ion Mobility Spectrometry Coupled to Mass Spectrometry
    Liu, Wenjie
    Davis, Austen L.
    Siems, William F.
    Yin, Dulin
    Clowers, Brian H.
    Hill, Herbert H., Jr.
    ANALYTICAL CHEMISTRY, 2017, 89 (05) : 2800 - 2806