Data-driven framework for warranty claims forecasting with an application for automotive components

被引:1
|
作者
Babakmehr, Mohammad [1 ]
Baumanns, Sascha [2 ]
Chehade, Abdallah [3 ,5 ]
Hochkirchen, Thomas [2 ]
Kalantari, Mahdokht [1 ]
Krivtsov, Vasiliy [1 ,4 ]
Schindler, David [2 ]
机构
[1] Ford Motor Co, Dearborn, MI USA
[2] Ford Res & Innovat Ctr Aachen, Aachen, Germany
[3] Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI USA
[4] Univ Maryland, College Pk, MD USA
[5] Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USA
关键词
dissimilarity; forecasting; machine learning; predictive analytics; proportional hazards; reporting delay; warranty data; REGRESSION-MODELS; CUSTOMER-RUSH; RELIABILITY; PREDICTION; PRODUCT; COST;
D O I
10.1002/eng2.12764
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Automakers spend billions of dollars annually towards warranty costs, and warranty reduction is typically high on their priorities. An accurate understanding of warranty performance plays a critical role in controlling and steering the business, and it is of crucial importance to fully understand the actual situation as well as be able to predict future performance, for example, to set up adequate financial reserves or to prioritize improvement actions based on expected forthcoming claims. Data maturation, a major nuisance causing changes in performance metrics with observation time, is one of the factors complicating warranty data analysis and typically leads to over-optimistic conclusions. In this paper, we propose a sequence of steps, decomposing and addressing the main reasons causing data maturation. We first compensate for reporting delay effects using a Cox regression model. For the compensation of heterogeneous build quality, sales delay, and warranty expiration rushes, a constrained quadratic optimization approach is presented, and finally, a sales pattern forecast is provided to properly weigh adjusted individual warranty key performance indicators. The results are shown to dramatically improve prior modeling approaches. Automakers budget for considerable warranty costs, making accurate forecasting vital for financial planning and prioritizing product improvements that lead to reduced costs in future production. This paper presents a data-driven framework for robust warranty forecasting. The framework compensates for reporting delays, heterogeneous build quality, sales delays, and warranty expiration rushes, ultimately improving decision-making and enhancing prior modeling approaches.image
引用
收藏
页数:18
相关论文
共 50 条
  • [21] A Survey on Data-Driven Runoff Forecasting Models Based on Neural Networks
    Sheng, Ziyu
    Wen, Shiping
    Feng, Zhong-kai
    Gong, Jiaqi
    Shi, Kaibo
    Guo, Zhenyuan
    Yang, Yin
    Huang, Tingwen
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (04): : 1083 - 1097
  • [22] Data-driven deep-learning forecasting for oil production and pressure
    Werneck, Rafael de Oliveira
    Prates, Raphael
    Moura, Renato
    Goncalves, Maiara Moreira
    Castro, Manuel
    Soriano-Vargas, Aurea
    Mendes Junior, Pedro Ribeiro
    Hossain, M. Manzur
    Zampieri, Marcelo Ferreira
    Ferreira, Alexandre
    Davolio, Alessandra
    Schiozer, Denis
    Rocha, Anderson
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 210
  • [23] Improving Forecasting Ability of GITM Using Data-Driven Model Refinement
    Ponder, Brandon M.
    Ridley, Aaron J.
    Goel, Ankit
    Bernstein, D. S.
    SPACE WEATHER-THE INTERNATIONAL JOURNAL OF RESEARCH AND APPLICATIONS, 2023, 21 (03):
  • [24] Data-Driven Photovoltaic Power Production Nowcasting and Forecasting for Polygeneration Microgrids
    Oneto, Luca
    Laureri, Federica
    Robba, Michela
    Delfino, Federico
    Anguita, Davide
    IEEE SYSTEMS JOURNAL, 2018, 12 (03): : 2842 - 2853
  • [25] Application of Data-Driven Modelling to Flood Forecasting with a Case Study for the Huai River in China
    Solomatine, Dimitti P.
    Xue Yunpeng
    Zhu Chuanbao
    Yan, Li
    PROCEEDINGS OF THE 1ST INTERNATIONAL YELLOW RIVER FORUM ON RIVER BASIN MANAGEMENT, VOL III, 2003, : 140 - 150
  • [26] Customer purchase forecasting for online tourism: A data-driven method with multiplex behavior data
    Chen, Shui-xia
    Wang, Xiao-kang
    Zhang, Hong-yu
    Wang, Jian-qiang
    Peng, Juan-juan
    TOURISM MANAGEMENT, 2021, 87
  • [27] Application of data-driven attack detection framework for secure operation in smart buildings
    Elnour, Mariam
    Meskin, Nader
    Khan, Khaled
    Jain, Raj
    SUSTAINABLE CITIES AND SOCIETY, 2021, 69
  • [28] A data-driven hybrid control framework to improve transit performance
    Wang, Wensi
    Liu, Jiaming
    Yao, Baozhen
    Jiang, Yonglei
    Wang, Yunpeng
    Yu, Bin
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 107 : 387 - 410
  • [29] Data-Driven at Sea: Forecasting and Revenue Management at Molslinjen
    Pinson, Pierre
    Bjorn, Mikkel
    Kristiansen, Simon
    Nielsen, Claus B.
    Janerka, Lasse
    Skovgaard, Jesper
    Durhuus, Kristian
    INFORMS JOURNAL ON APPLIED ANALYTICS, 2025, 55 (01):
  • [30] Data-Driven Forecasting Algorithms for Building Energy Consumption
    Noh, Hae Young
    Rajagopal, Ram
    SENSORS AND SMART STRUCTURES TECHNOLOGIES FOR CIVIL, MECHANICAL, AND AEROSPACE SYSTEMS 2013, 2013, 8692