Sub-Bergman Hilbert spaces on the unit disk III

被引:3
作者
Luo, Shuaibing [1 ]
Zhu, Kehe [2 ]
机构
[1] Hunan Univ, Sch Math, Changsha 410082, Hunan, Peoples R China
[2] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2024年 / 76卷 / 05期
基金
中国国家自然科学基金;
关键词
Bergman space; Nevanlinna-Pick kernel; Toeplitz operator; defect operator; sub-Bergman spaces; BALL;
D O I
10.4153/S0008414X23000494
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a bounded analytic function f on the unit disk D with ?f ?8= 1, we consider the defect operators D-f and D-f of the Toeplitz operators T-f and T-f, respectively, on the weighted Bergman space A(a)(2). The ranges of D-f and D-f, written as H(f) and H(f) and equipped with appropriate inner products, are called sub-Bergman spaces. We prove the following three results in the paper: for -1 < a = 0, the space H(f) has a complete Nevanlinna-Pick kernel if and only if f isa M & ouml;bius map; for a > -1, we have H(f) = H(f) = A(a-1)(2) if and only if the defect operators D-f and D-f are compact; and for a > -1, we have D-f(2) (A(a)(2)) = D-f(2)(A(a)(2)) = A(a-2)(2) if and only if f is a finite Blaschke product. In some sense, our restrictions on a here are best possible.
引用
收藏
页码:1520 / 1537
页数:18
相关论文
共 27 条