A flexible optimization study on air-cooled battery thermal management system by considering of system volume and cooling performance

被引:6
|
作者
Lu, Hao [1 ,2 ]
Tang, Xiaole [1 ]
机构
[1] Xinjiang Univ, Sch Elect Engn, Lab Clean Energy, Urumqi 830047, Peoples R China
[2] Xinjiang Univ, Sch Future Technol, Urumqi 830047, Peoples R China
基金
中国国家自然科学基金;
关键词
Battery thermal management; Air cooling; Multi-objective optimization; Shortcut computation model; LITHIUM-ION BATTERY; DESIGN OPTIMIZATION; FLOW CONFIGURATION; GENETIC ALGORITHM; PACK;
D O I
10.1016/j.est.2023.108527
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
When the battery temperature exceeds the normal range, the battery efficiency performance, and life will be significantly reduced, and the battery may even explode. Therefore, an optimal battery thermal management system is required to dissipate heat efficiently. The existing research focuses on the structural design to reduce the maximum temperature of the system. However, the volume of the cooling system is also important for electric vehicle design, which has received little attention. In this study, a new flexible optimization strategy for a battery thermal management system is proposed, which is a hybrid of system volume and cooling performance and can determine the appropriate optimized structure according to the engineering applications. The proposed method belongs to four steps: optimization system design, establishment of shortcut computation codes, multiobjective optimization and comprehensive fuzzy decision making. The numerical simulation based on computational fluid dynamics (CFD) is used to verify the cooling performance of the optimized system. Compared with the three existing designs of battery thermal management system from previous literatures, the volume is reduced by a maximum of 13.01 %. In the process of stable heat generation, the maximum temperature difference decreased by 65.79 %, 40.65 %, and 63.69 %, and the temperature uniformity increased by 65.87 %, 34.93 %, and 60.80 %, respectively. In the unsteady heat generation of the battery pack, at the discharge rate of 5C, the maximum temperature difference decreases by 2.28 K, and the maximum temperature difference and temperature uniformity decrease by 57.11 % and 49.15 %, respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles
    Zhao, Gang
    Wang, Xiaolin
    Negnevitsky, Michael
    Zhang, Hengyun
    Li, Chengjiang
    SUSTAINABILITY, 2022, 14 (09)
  • [42] A Thermal Investigation and Optimization of an Air-Cooled Lithium-Ion Battery Pack
    Peng, Xiongbin
    Cui, Xujian
    Liao, Xiangping
    Garg, Akhil
    ENERGIES, 2020, 13 (11)
  • [43] A design optimization study of an air-cooling battery thermal management system for electric vehicles
    Zhao, Gang
    Wang, Xiaolin
    Negnevitsky, Michael
    Zhang, Hengyun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART E-JOURNAL OF PROCESS MECHANICAL ENGINEERING, 2023, 237 (04) : 1125 - 1136
  • [44] Thermal performance investigation of an air-cooled lithium-ion battery pack considering the inconsistency of battery cells
    Peng, Xiongbin
    Ma, Chong
    Garg, Akhil
    Bao, Nengsheng
    Liao, Xiangping
    APPLIED THERMAL ENGINEERING, 2019, 153 : 596 - 603
  • [45] Effects of circumferential fin on cooling performance improvement of forced air-cooled battery pack
    Padalkar, Akshay B.
    Chaudhari, Mangesh B.
    Kore, Kiran B.
    Newaskar, Shivkumar R.
    Nilegave, Dhanaraj S.
    Funde, Adinath M.
    APPLIED THERMAL ENGINEERING, 2024, 238
  • [46] Experiment and simulation for pouch battery with silica cooling plates and copper mesh based air cooling thermal management system
    Li, Xinxi
    He, Fengqi
    Zhang, Guoqing
    Huang, Qiqiu
    Zhou, Dequan
    APPLIED THERMAL ENGINEERING, 2019, 146 : 866 - 880
  • [47] A Y-Type Air-Cooled Battery Thermal Management System with a Short Airflow Path for Temperature Uniformity
    Li, Xiangyang
    Liu, Jing
    Li, Xiaomin
    BATTERIES-BASEL, 2024, 10 (09):
  • [48] Air and PCM cooling for battery thermal management considering battery cycle life
    Chen, Fenfang
    Huang, Rui
    Wang, Chongming
    Yu, Xiaoli
    Liu, Huijun
    Wu, Qichao
    Qian, Keyu
    Bhagat, Rohit
    APPLIED THERMAL ENGINEERING, 2020, 173
  • [49] Optimization and Numerical Simulation of Novel Air-cooling System for the Thermal Management of Lithium-ion Battery Pack
    Lin, Xiongchao
    Shao, Keke
    Wang, Caihong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2022, 17 (01):
  • [50] Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles
    Choi, Yong Seok
    Kang, Dal Mo
    JOURNAL OF POWER SOURCES, 2014, 270 : 273 - 280