The edge smoothed finite element for multiscale homogenization

被引:3
|
作者
Henys, Petr [1 ]
Pokatilov, Gleb [1 ]
机构
[1] Tech Univ Liberec, Inst New Technol & Appl Informat, Fac Mechatron Informat & Interdisciplinary Studies, Studentska 1402-2, Liberec 46117, Czech Republic
关键词
Multiscale; Linear elasticity; Computational homogenization; Smoothed finite element; COMPUTATIONAL HOMOGENIZATION; COMPOSITE-MATERIALS; BOUNDARY-CONDITIONS; ES-FEM;
D O I
10.1016/j.enganabound.2023.07.043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Computational homogenization provides an effective method for the design of material microstructures and the exploration of new materials with superior performances. Nevertheless, the homogenization method often relies on finite element (FE) discretization, which may act as a computational constriction in terms of its efficiency and accuracy. The smoothed FE variant exhibits attractive mathematical/numerical properties, which are further explored in this study. We combined edge-smoothed finite elements with periodic boundary conditions treated via the Nitsche and mortar methods on a non-matching boundary mesh aimed at improving the estimation of the homogenized elasticity properties. The convergence and size effect benchmarks revealed that the smoothed finite element method provides for greater accuracy and efficiency than does regular FE.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 50 条
  • [41] SIMULATION OF HYPERTHERMIA TREATMENT USING THE EDGE-BASED SMOOTHED FINITE-ELEMENT METHOD
    Li, Eric
    Liu, G. R.
    Tan, Vincent
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2010, 57 (11) : 822 - 847
  • [42] Modeling fluid-structure interaction with the edge-based smoothed finite element method
    He, Tao
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 460
  • [43] A mixed edge-based smoothed finite element method (MES-FEM) for elasticity
    Leonetti, Leonardo
    Garcea, Giovanni
    Nguyen-Xuan, H.
    COMPUTERS & STRUCTURES, 2016, 173 : 123 - 138
  • [44] An edge-based smoothed finite element method for wave scattering by an obstacle in elastic media
    Yue, Junhong
    Liu, G. R.
    Li, Ming
    Niu, Ruiping
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2019, 101 : 121 - 138
  • [45] A smoothed finite element method for plate analysis
    Nguyen-Xuan, H.
    Rabczuk, T.
    Bordas, Stephane
    Debongnie, J. F.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (13-16) : 1184 - 1203
  • [46] On the approximation in the smoothed finite element method (SFEM)
    Bordas, Stephane P. A.
    Natarajan, Sundararajan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 81 (05) : 660 - 670
  • [47] A Smoothed Finite Element Method for Mechanics Problems
    G. R. Liu
    K. Y. Dai
    T. T. Nguyen
    Computational Mechanics, 2007, 39 : 859 - 877
  • [48] A smoothed finite element method for shell analysis
    Nguyen-Thanh, N.
    Rabczuk, Timon
    Nguyen-Xuan, H.
    Bordas, Stephane P. A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 198 (02) : 165 - 177
  • [49] The Numerical Accuracy Analysis of Asymptotic Homogenization Method and Multiscale Finite Element Method for Periodic Composite Materials
    Dong, Hao
    Nie, Yufeng
    Yang, Zihao
    Zhang, Yang
    Wu, Yatao
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2016, 111 (05): : 395 - 419
  • [50] Image-based semi-multiscale finite element analysis using elastic subdomain homogenization
    J. Jansson
    K. Salomonsson
    J. Olofsson
    Meccanica, 2021, 56 : 2799 - 2811