Malliavin derivative of Teugels martingales and mean-field type stochastic maximum principle

被引:0
作者
Zong, Gaofeng [1 ,2 ]
机构
[1] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan, Peoples R China
[2] Shandong Univ Finance & Econ, Sch Stat & Math, Jinan 250014, Peoples R China
基金
美国国家科学基金会;
关键词
Teugels martingales; mean-field; Malliavin derivative; stochastic maximum principle; DIFFERENTIAL-EQUATIONS; SYSTEMS;
D O I
10.1080/17442508.2023.2256506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the mean-field type stochastic control problem where the dynamics is governed by a general Levy process with moments of all orders. For this, we introduce the power jump processes and the related Teugels martingales and give the Malliavin derivative with respect to Teugels martingales. We derive necessary and sufficient conditions for optimality of our control problem in the form of a mean-field stochastic maximum principle.
引用
收藏
页码:1072 / 1091
页数:20
相关论文
共 22 条
  • [21] Linear-Quadratic Optimal Control Problems for Mean-Field Stochastic Differential Equation with Levy Process
    Xiong, Hong
    Tang, Maoning
    Meng, Qingxin
    [J]. COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2022, 4 (04) : 1386 - 1415
  • [22] Yong J., 1999, Stochastic Controls: Hamiltonian Systems and HJB Equations, DOI [10.1007/978-1-4612-1466-3, DOI 10.1007/978-1-4612-1466-3]