Linking soil depth to aridity effects on soil microbial community composition, diversity and resource limitation

被引:29
作者
He, Haoran [1 ,2 ]
Xu, Mingzhe [2 ,3 ]
Li, Wenting [1 ,2 ]
Chen, Li [1 ,2 ]
Chen, Yanan [2 ,3 ]
Moorhead, Daryl L. [4 ]
Brangari, Albert C. [5 ]
Liu, Ji [6 ]
Cui, Yongxing [7 ]
Zeng, Yi [2 ,3 ]
Zhang, Zhiqin [1 ]
Duan, Chengjiao [2 ,3 ,8 ]
Huang, Min [9 ]
Fang, Linchuan [1 ,2 ,10 ]
机构
[1] Northwest A&F Univ, Coll Nat Resources & Environm, Yangling 712100, Peoples R China
[2] Northwest A&F Univ, State Key Lab Soil Eros & Dryland Farming Loess Pl, Yangling 712100, Shaanxi, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Toledo, Dept Environm Sci, 2801 W Bancroft St, Toledo, OH 43606 USA
[5] Lund Univ, Dept Biol, Microbial Ecol, Lund, Sweden
[6] Cent China Normal Univ, Coll Urban & Environm Sci, Wuhan 430079, Peoples R China
[7] Peking Univ, Sino French Inst Earth Syst Sci, Coll Urban & Environm Sci, Beijing 100871, Peoples R China
[8] Shanxi Agr Univ, Coll Resources & Environm, Taigu 030801, Shanxi, Peoples R China
[9] Wuhan Univ Technol, Coll Resources & Environm Engn, Wuhan 430070, Hubei, Peoples R China
[10] CAS Ctr Excellence Quaternary Sci & Global Change, Xian 710061, Peoples R China
基金
中国国家自然科学基金;
关键词
Aridity; Soil microorganism; Metabolism limitation; Community structure; Depth profile; Climate change; EXTRACELLULAR ENZYME-ACTIVITY; NORTHERN LOESS PLATEAU; ORGANIC-CARBON; ECOENZYMATIC STOICHIOMETRY; VEGETATION RESTORATION; PRECIPITATION GRADIENT; BACTERIAL COMMUNITIES; NUTRIENT LIMITATIONS; FUNGAL COMMUNITIES; EXTRACTION METHOD;
D O I
10.1016/j.catena.2023.107393
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
With ongoing climate change, aridity is increasing worldwide, affecting biodiversity and ecosystem function in drylands. However, how the depth-profile microbial community structure and metabolic limitations change along aridity gradients are still poorly explored. Here, 16S rRNA and ITS amplicon sequencing and ecoenzymatic stoichiometry analysis were used to investigate both bacterial and fungal diversities and resource limitations in 1 m depth profiles across a wide aridity gradient (0.51-0.78) in a semiarid region. Results showed a sharp decrease in microbial diversity with soil depth, accompanied by an increase in microbial phosphorus (P) vs. N (nitrogen) limitation and a decrease in microbial carbon (C) vs. nutrient limitation. Aridity led to a strong shift in microbial community composition, but aridity has a threshold effect on microbial resource limitation through impacts on soil pH and C/P or N/P. When the aridity threshold (1-precipitation/evapotranspiration) exceeds 0.65, relationship between aridity and microbial resource demand was decoupled; but at aridity threshold = 0.65, microbial relative C limitation and C-acquiring enzyme activity dropped. These results suggest that aridity might have a stronger influence on microbial community composition, than on diversity, shaped by inherent soil biotic factors (i.e., MBC:MBP or MBN:MBP). These findings suggest that soil microbial diversity or enzymatic stoichiometry may be not necessary to mirror changes in water availability in the drylands, while aridity would be well explained by microbial community composition.
引用
收藏
页数:14
相关论文
共 137 条
[1]   Phosphorus status of soils from contrasting forested ecosystems in southwestern Siberia: effects of microbiological and physicochemical properties [J].
Achat, D. L. ;
Bakker, M. R. ;
Augusto, L. ;
Derrien, D. ;
Gallegos, N. ;
Lashchinskiy, N. ;
Milin, S. ;
Nikitich, P. ;
Raudina, T. ;
Rusalimova, O. ;
Zeller, B. ;
Barsukov, P. .
BIOGEOSCIENCES, 2013, 10 (02) :733-752
[2]   Modelling in situ activities of enzymes as a tool to explain seasonal variation of soil respiration from agro-ecosystems [J].
Ali, Rana S. ;
Ingwersen, Joachim ;
Demyan, Michael S. ;
Funkuin, Yvonne N. ;
Wizemann, Hans-Dieter ;
Kandeler, Ellen ;
Poll, Christian .
SOIL BIOLOGY & BIOCHEMISTRY, 2015, 81 :291-303
[3]  
Allison SD, 2011, SOIL BIOL, V22, P229, DOI 10.1007/978-3-642-14225-3_12
[4]   Biogeography of soil archaea and bacteria along a steep precipitation gradient [J].
Angel, Roey ;
Soares, M. Ines M. ;
Ungar, Eugene D. ;
Gillor, Osnat .
ISME JOURNAL, 2010, 4 (04) :553-563
[5]  
Archer E., 2016, RFPERMUTE ESTIMATE P, DOI DOI 10.32614/CRAN.PACKAGE.RFPERMUTE
[6]   Soil parent material-A major driver of plant nutrient limitations in terrestrial ecosystems [J].
Augusto, Laurent ;
Achat, David L. ;
Jonard, Mathieu ;
Vidal, David ;
Ringeval, Bruno .
GLOBAL CHANGE BIOLOGY, 2017, 23 (09) :3808-3824
[7]   Structure and function of the global topsoil microbiome [J].
Bahram, Mohammad ;
Hildebrand, Falk ;
Forslund, Sofia K. ;
Anderson, Jennifer L. ;
Soudzilovskaia, Nadejda A. ;
Bodegom, Peter M. ;
Bengtsson-Palme, Johan ;
Anslan, Sten ;
Coelho, Luis Pedro ;
Harend, Helery ;
Huerta-Cepas, Jaime ;
Medema, Marnix H. ;
Maltz, Mia R. ;
Mundra, Sunil ;
Olsson, Pal Axel ;
Pent, Mari ;
Polme, Sergei ;
Sunagawa, Shinichi ;
Ryberg, Martin ;
Tedersoo, Leho ;
Bork, Peer .
NATURE, 2018, 560 (7717) :233-+
[8]   Responses of soil bacterial and fungal communities to extreme desiccation and rewetting [J].
Barnard, Romain L. ;
Osborne, Catherine A. ;
Firestone, Mary K. .
ISME JOURNAL, 2013, 7 (11) :2229-2241
[9]   Comparing two theories about the nature of soil phosphate [J].
Barrow, N. J. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2021, 72 (02) :679-685
[10]   Ecological mechanisms underlying aridity thresholds in global drylands [J].
Berdugo, Miguel ;
Vidiella, Blai ;
Sole, Ricard V. ;
Maestre, Fernando T. .
FUNCTIONAL ECOLOGY, 2022, 36 (01) :4-23