Shear Performance of Interface Between Normal Concrete and Ultra-high Performance Concrete in Cryogenic Circumstance

被引:2
作者
Chen, Yujie [1 ]
Xie, Jian [1 ]
Kang, Ercong [1 ]
Tong, Chenglong [2 ]
机构
[1] Tianjin Univ, Sch Civil Engn, Key Lab Coast Civil Struct Safety, Minist Educ, Tianjin 300350, Peoples R China
[2] China Construct 5th Engn Bur, Construct Co LTD 3, Wuhan, Peoples R China
来源
PROCEEDINGS OF THE 17TH EAST ASIAN-PACIFIC CONFERENCE ON STRUCTURAL ENGINEERING AND CONSTRUCTION, EASEC-17 2022 | 2023年 / 302卷
基金
中国国家自然科学基金;
关键词
UHPC; NC; Interface; Shear performance; Cryogenic circumstance; COMPRESSIVE STRENGTH; BEHAVIOR;
D O I
10.1007/978-981-19-7331-4_41
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high performance concrete(UHPC) is known for its high strength, high toughness and durability, which makesUHPCbe seen as a promising repairing material for normal concrete(NC). In order to make sure the application of UHPC in reinforcement, especially in cryogenic circumstance, it is critical to characterize the bonding performance between UHPC and NC. Through 11 sets of normal concrete and ultra-high performance concrete specimens (UHPC-NC specimens) were tested by double shear tests, the shear properties of UHPC-NC specimens in normal and cryogenic environment (-60 degrees C) were evaluated and discussed. Different interface treatments were used, including untreated, water jetting and using retarder. The effect of interface agent was also studied. The results show that the shear strength of the interface was improved by increasing surface roughness degree. The failure mode presented brittle failure, no matter what kind of interface treatments. Cryogenic circumstance can improve the bonding strength of UHPC-NC, and the group without interfacial agent had a more significant improvement. The performance of interfacial agent in low temperature limits the improvement of interfacial bonding strength to a certain extent.
引用
收藏
页码:506 / 514
页数:9
相关论文
共 50 条
  • [21] Mechanical Properties of Ultra-High Performance Concrete (UHPC) and Ultra-High Performance Fiber-Reinforced Concrete (UHPFRC) with Recycled Sand
    Choi, Donguk
    Hong, Kyungchan
    Ochirbud, Munkhtuvshin
    Meiramov, Didar
    Sukontaskuul, Piti
    INTERNATIONAL JOURNAL OF CONCRETE STRUCTURES AND MATERIALS, 2023, 17 (01)
  • [22] Experimental and theoretical model study on shear performance of ultra-high performance concrete corbels
    Huang Y.
    Xia W.
    Hong Z.
    Jianzhu Jiegou Xuebao/Journal of Building Structures, 2024, 45 (08): : 108 - 117
  • [23] Shear performances of reinforced ultra-high performance concrete short beams
    Chen, Baochun
    Zhou, Jialiang
    Zhang, Dong
    Sennah, Khaled
    Nuti, Camillo
    ENGINEERING STRUCTURES, 2023, 277
  • [24] Evaluation of modulus of elasticity of ultra-high performance concrete
    Alsalman, Ali
    Dang, Canh N.
    Prinz, Gary S.
    Hale, W. Micah
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 153 : 918 - 928
  • [25] Development of an optimum mixture of ultra-high performance concrete
    Ahmad, Shamsad
    Hakeem, Ibrahim
    Maslehuddin, Mohammed
    EUROPEAN JOURNAL OF ENVIRONMENTAL AND CIVIL ENGINEERING, 2016, 20 (09) : 1106 - 1126
  • [26] Experimental evaluation of the normal and tangential stiffness of the interface between high strength concrete and ultra-high-performance concrete
    Prado, Lisiane Pereira
    de Lima Araujo, Daniel
    Carrazedo, Ricardo
    Debs, Mounir Khalil El
    MATERIALS AND STRUCTURES, 2024, 57 (04)
  • [27] Simulation of surface preparations to predict the bond behaviour between normal strength concrete and ultra-high performance concrete
    Ganesh, P.
    Murthy, A. Ramachandra
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 250
  • [28] Preparation and properties of ultra-high performance lightweight concrete
    Pan, Huimin
    Yan, Shuaijun
    Zhao, Qingxin
    Wang, Dongli
    MAGAZINE OF CONCRETE RESEARCH, 2023, 75 (06) : 310 - 323
  • [29] Effect of coarse aggregate on the stability and mechanical performance of ultra-high performance concrete (UHPC)
    Zhong, Rui
    Pan, Mingyan
    Wu, Hongyu
    Cheng, Zhao
    Liu, Jianzhong
    Wang, Jingquan
    Yao, Yiming
    Ma, Hongyan
    COMPOSITES PART B-ENGINEERING, 2025, 297
  • [30] Investigation properties of ultra-high performance concrete incorporating pond ash
    Soni, Abhishek
    Nateriya, Raman
    SCIENCE AND ENGINEERING OF COMPOSITE MATERIALS, 2024, 31 (01)