Making in silico predictive models for toxicology FAIR

被引:12
作者
Cronin, Mark T. D. [1 ]
Belfield, Samuel J. [1 ]
Briggs, Katharine A. [2 ]
Enoch, Steven J. [1 ]
Firman, James W. [1 ]
Frericks, Markus [3 ]
Garrard, Clare [4 ]
Maccallum, Peter H. [4 ]
Madden, Judith C. [1 ]
Pastor, Manuel [5 ]
Sanz, Ferran [5 ]
Soininen, Inari [6 ]
Sousoni, Despoina [4 ]
机构
[1] Liverpool John Moores Univ, Sch Pharm & Biomol Sci, Byrom St, Liverpool L3 3AF, England
[2] Lhasa Ltd, Granary Wharf House,2 Canal Wharf, Leeds LS11 5PS, England
[3] BASF SE, APD-ET-Li 444,Speyerer St 2, D-67117 Limburgerhof, Germany
[4] Wellcome Genome Campus, ELIXIR, Hinxton CB10 1SD, Cambs, England
[5] Univ Pompeu Fabra, Hosp Mar Med Res Inst IMIM, Dept Med & Life Sci MELIS, Res Programme Biomed Informat GRIB, Carrer Dr Aiguader 88, Barcelona 08003, Spain
[6] Synapse Res Management Partners SL, Calle Velazquez 94,Planta 1, Madrid 28006, Spain
关键词
In silico model; Toxicology; FAIR; QSAR; PBK; Next generation risk assessment; New approach methodologies; REGULATORY ASSESSMENT; ONTOLOGY; TOOLS; QSARS;
D O I
10.1016/j.yrtph.2023.105385
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
In silico predictive models for toxicology include quantitative structure-activity relationship (QSAR) and physi-ologically based kinetic (PBK) approaches to predict physico-chemical and ADME properties, toxicological effects and internal exposure. Such models are used to fill data gaps as part of chemical risk assessment. There is a growing need to ensure in silico predictive models for toxicology are available for use and that they are repro-ducible. This paper describes how the FAIR (Findable, Accessible, Interoperable, Reusable) principles, developed for data sharing, have been applied to in silico predictive models. In particular, this investigation has focussed on how the FAIR principles could be applied to improved regulatory acceptance of predictions from such models. Eighteen principles have been developed that cover all aspects of FAIR. It is intended that FAIRification of in silico predictive models for toxicology will increase their use and acceptance.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Current trends in in silico, in vitro toxicology, and safety biomarkers in early drug development
    Loiodice, Simon
    da Costa, Andre Nogueira
    Atienzar, Franck
    [J]. DRUG AND CHEMICAL TOXICOLOGY, 2019, 42 (02) : 113 - 121
  • [42] Characterization and validation of an in silico toxicology model to predict the mutagenic potential of drug impurities
    Valerio, Luis G., Jr.
    Cross, Kevin P.
    [J]. TOXICOLOGY AND APPLIED PHARMACOLOGY, 2012, 260 (03) : 209 - 221
  • [43] Animal models of toxicology testing: the role of pigs
    Helke, Kristi L.
    Swindle, Marvin Michael
    [J]. EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2013, 9 (02) : 127 - 139
  • [44] Swine as Models in Biomedical Research and Toxicology Testing
    Swindle, M. M.
    Makin, A.
    Herron, A. J.
    Clubb, F. J., Jr.
    Frazier, K. S.
    [J]. VETERINARY PATHOLOGY, 2012, 49 (02) : 344 - 356
  • [45] Human pluripotent stem cells in drug discovery and predictive toxicology
    Laustriat, Delphine
    Gide, Jacqueline
    Peschanski, Marc
    [J]. BIOCHEMICAL SOCIETY TRANSACTIONS, 2010, 38 : 1051 - 1057
  • [46] Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology
    Fielden, MR
    Zacharewski, TR
    [J]. TOXICOLOGICAL SCIENCES, 2001, 60 (01) : 6 - 10
  • [47] Comparison of In Silico Models for Prediction of Mutagenicity
    Bakhtyari, Nazanin G.
    Raitano, Giuseppa
    Benfenati, Emilio
    Martin, Todd
    Young, Douglas
    [J]. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS, 2013, 31 (01) : 45 - 66
  • [48] Predictive toxicology: What does it add to environmental health risk assessment?
    Marano, Francelyne
    Barouki, Robert
    [J]. ENVIRONNEMENT RISQUES & SANTE, 2011, 10 (05): : 404 - 411
  • [49] Improving QSAR Modeling for Predictive Toxicology using Publicly Aggregated Semantic Graph Data and Graph Neural Networks
    Romano, Joseph D.
    Hao, Yun
    Moore, Jason H.
    [J]. BIOCOMPUTING 2022, PSB 2022, 2022, : 187 - 198
  • [50] FAIR AI models in high energy physics
    Duarte, Javier
    Li, Haoyang
    Roy, Avik
    Zhu, Ruike
    Huerta, E. A.
    Diaz, Daniel
    Harris, Philip
    Kansal, Raghav
    Katz, Daniel S.
    Kavoori, Ishaan H.
    Kindratenko, Volodymyr V.
    Mokhtar, Farouk
    Neubauer, Mark S.
    Eon Park, Sang
    Quinnan, Melissa
    Rusack, Roger
    Zhao, Zhizhen
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):