Making in silico predictive models for toxicology FAIR

被引:12
|
作者
Cronin, Mark T. D. [1 ]
Belfield, Samuel J. [1 ]
Briggs, Katharine A. [2 ]
Enoch, Steven J. [1 ]
Firman, James W. [1 ]
Frericks, Markus [3 ]
Garrard, Clare [4 ]
Maccallum, Peter H. [4 ]
Madden, Judith C. [1 ]
Pastor, Manuel [5 ]
Sanz, Ferran [5 ]
Soininen, Inari [6 ]
Sousoni, Despoina [4 ]
机构
[1] Liverpool John Moores Univ, Sch Pharm & Biomol Sci, Byrom St, Liverpool L3 3AF, England
[2] Lhasa Ltd, Granary Wharf House,2 Canal Wharf, Leeds LS11 5PS, England
[3] BASF SE, APD-ET-Li 444,Speyerer St 2, D-67117 Limburgerhof, Germany
[4] Wellcome Genome Campus, ELIXIR, Hinxton CB10 1SD, Cambs, England
[5] Univ Pompeu Fabra, Hosp Mar Med Res Inst IMIM, Dept Med & Life Sci MELIS, Res Programme Biomed Informat GRIB, Carrer Dr Aiguader 88, Barcelona 08003, Spain
[6] Synapse Res Management Partners SL, Calle Velazquez 94,Planta 1, Madrid 28006, Spain
关键词
In silico model; Toxicology; FAIR; QSAR; PBK; Next generation risk assessment; New approach methodologies; REGULATORY ASSESSMENT; ONTOLOGY; TOOLS; QSARS;
D O I
10.1016/j.yrtph.2023.105385
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
In silico predictive models for toxicology include quantitative structure-activity relationship (QSAR) and physi-ologically based kinetic (PBK) approaches to predict physico-chemical and ADME properties, toxicological effects and internal exposure. Such models are used to fill data gaps as part of chemical risk assessment. There is a growing need to ensure in silico predictive models for toxicology are available for use and that they are repro-ducible. This paper describes how the FAIR (Findable, Accessible, Interoperable, Reusable) principles, developed for data sharing, have been applied to in silico predictive models. In particular, this investigation has focussed on how the FAIR principles could be applied to improved regulatory acceptance of predictions from such models. Eighteen principles have been developed that cover all aspects of FAIR. It is intended that FAIRification of in silico predictive models for toxicology will increase their use and acceptance.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Predictive toxicology today: the transition from biological knowledge to practicable models
    Benigni, Romualdo
    EXPERT OPINION ON DRUG METABOLISM & TOXICOLOGY, 2016, 12 (09) : 989 - 992
  • [2] In silico toxicology protocols
    Myatt, Glenn J.
    Ahlberg, Ernst
    Akahori, Yumi
    Allen, David
    Amberg, Alexander
    Anger, Lennart T.
    Aptula, Aynur
    Auerbach, Scott
    Beilke, Lisa
    Bellion, Phillip
    Benigni, Romualdo
    Bercu, Joel
    Booth, Ewan D.
    Bower, Dave
    Brigo, Alessandro
    Burden, Natalie
    Cammerer, Zoryana
    Cronin, Mark T. D.
    Cross, Kevin P.
    Custer, Laura
    Dettwiler, Magdalena
    Dobo, Krista
    Ford, Kevin A.
    Fortin, Marie C.
    Gad-McDonald, Samantha E.
    Gellatly, Nichola
    Gervais, Veronique
    Glover, Kyle P.
    Glowienke, Susanne
    Van Gompel, Jacky
    Gutsell, Steve
    Hardy, Barry
    Harvey, James S.
    Hillegass, Jedd
    Honma, Masamitsu
    Hsieh, Jui-Hua
    Hsu, Chia-Wen
    Hughes, Kathy
    Johnson, Candice
    Jolly, Robert
    Jones, David
    Kemper, Ray
    Kenyon, Michelle O.
    Kim, Marlene T.
    Kruhlak, Naomi L.
    Kulkarni, Sunil A.
    Kuemmerer, Klaus
    Leavitt, Penny
    Majer, Bernhard
    Masten, Scott
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2018, 96 : 1 - 17
  • [3] In silico toxicology models and databases as FDA Critical Path Initiative toolkits
    Valerio L.G.
    Human Genomics, 5 (3) : 200 - 207
  • [4] Target-specific toxicity knowledgebase (TsTKb): a novel toolkit for in silico predictive toxicology
    Li, Yan
    Idakwo, Gabriel
    Thangapandian, Sundar
    Chen, Minjun
    Hong, Huixiao
    Zhang, Chaoyang
    Gong, Ping
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART C-ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS, 2018, 36 (04) : 219 - 236
  • [6] Fuzzy Complex Number Aided Evaluation of Predictive Toxicology Models
    Fu, Xin
    Travis, Kim
    Neagu, Daniel
    Ridley, Mick
    Shen, Qiang
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [7] Genetic toxicology in silico protocol
    Hasselgren, Catrin
    Ahlberg, Ernst
    Akahori, Yumi
    Amberg, Alexander
    Anger, Lennart T.
    Atienzar, Franck
    Auerbach, Scott
    Beilke, Lisa
    Bellion, Phillip
    Benigni, Romualdo
    Bercu, Joel
    Booth, Ewan D.
    Bower, Dave
    Brigo, Alessandro
    Cammerer, Zoryana
    Cronin, Mark T. D.
    Crooks, Ian
    Cross, Kevin P.
    Custer, Laura
    Dobo, Krista
    Doktorova, Tatyana
    Faulkner, David
    Ford, Kevin A.
    Fortin, Marie C.
    Frericks, Markus
    Gad-McDonald, Samantha E.
    Gellatly, Nichola
    Gerets, Helga
    Gervais, Veronique
    Glowienke, Susanne
    Van Gompel, Jacky
    Harvey, James S.
    Hillegass, Jedd
    Honma, Masamitsu
    Hsieh, Jui-Hua
    Hsu, Chia-Wen
    Barton-Maclaren, Tara S.
    Johnson, Candice
    Jolly, Robert
    Jones, David
    Kemper, Ray
    Kenyon, Michelle O.
    Kruhlak, Naomi L.
    Kulkarni, Sunil A.
    Kuemmerer, Klaus
    Leavitt, Penny
    Masten, Scott
    Miller, Scott
    Moudgal, Chandrika
    Muster, Wolfgang
    REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2019, 107
  • [8] Integrating background knowledge from internet databases into predictive toxicology models
    Edelstein, M.
    Buchwald, F.
    Richter, L.
    Kramer, S.
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2010, 21 (1-2) : 21 - 35
  • [9] Improved QSARs for predictive toxicology of halogenated hydrocarbons
    Trohalaki, S
    Gifford, E
    Pachter, R
    COMPUTERS & CHEMISTRY, 2000, 24 (3-4): : 421 - 427
  • [10] Quantum descriptors for predictive toxicology of halogenated aliphatic hydrocarbons
    Trohalaki, S
    Pachter, R
    SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2003, 14 (02) : 131 - 143