High-throughput genetic engineering of nonmodel and undomesticated bacteria via iterative site-specific genome integration

被引:28
作者
Elmore, Joshua R. [1 ]
Dexter, Gara N. [2 ]
Baldino, Henri [1 ]
Huenemann, Jay D. [2 ,3 ]
Francis, Ryan [1 ]
Peabody, V. George L. [2 ]
Martinez-Baird, Jessica [2 ]
Riley, Lauren A. [2 ,3 ]
Simmons, Tuesday [4 ]
Coleman-Derr, Devin [4 ,5 ]
Guss, Adam M. [2 ]
Egbert, Robert G. [1 ]
机构
[1] Pacific Northwest Natl Lab, Biol Sci Div, Richland, WA 99354 USA
[2] Oak Ridge Natl Lab, Biosci Div, One Bethel Valley Rd, Oak Ridge, TN 37831 USA
[3] Univ Tennessee, Bredesen Ctr Interdisciplinary Res, Knoxville, TN 37996 USA
[4] Univ Calif Berkeley, Plant & Microbial Biol Dept, Berkeley, CA 94701 USA
[5] USDA ARS, Plant Gene Express Ctr, Albany, CA 94710 USA
关键词
ESCHERICHIA-COLI; PHI-C31; INTEGRASE; PHAGE INTEGRASES; CLONING VECTORS; PROTEIN; CHROMOSOME; SELECTION;
D O I
10.1126/sciadv.ade1285
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient genome engineering is critical to understand and use microbial functions. Despite recent development of tools such as CRISPR-Cas gene editing, efficient integration of exogenous DNA with well-characterized functions remains limited to model bacteria. Here, we describe serine recombinase-assisted genome engineering, or SAGE, an easy-to-use, highly efficient, and extensible technology that enables selection marker-free, site-specific genome integration of up to 10 DNA constructs, often with efficiency on par with or superior to replicating plasmids. SAGE uses no replicating plasmids and thus lacks the host range limitations of other genome engineering technologies. We demonstrate the value of SAGE by characterizing genome integration efficiency in five bacteria that span multiple taxonomy groups and biotechnology applications and by identifying more than 95 heterologous promoters in each host with consistent transcription across environmental and genetic contexts. We anticipate that SAGE will rapidly expand the number of industrial and environmental bacteria compatible with high-throughput genetics and synthetic biology.
引用
收藏
页数:19
相关论文
共 55 条
  • [11] Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome
    Durrant, Matthew G.
    Fanton, Alison
    Tycko, Josh
    Hinks, Michaela
    Chandrasekaran, Sita S.
    Perry, Nicholas T.
    Schaepe, Julia
    Du, Peter P.
    Lotfy, Peter
    Bassik, Michael C.
    Bintu, Lacramioara
    Bhatt, Ami S.
    Hsu, Patrick D.
    [J]. NATURE BIOTECHNOLOGY, 2023, 41 (04) : 488 - +
  • [12] Production of itaconic acid from alkali pretreated lignin by dynamic two stage bioconversion
    Elmore, Joshua R.
    Dexter, Gara N.
    Salvachua, Davinia
    Martinez-Baird, Jessica
    Hatmaker, E. Anne
    Huenemann, Jay D.
    Klingeman, Dawn M.
    Peabody, George L.
    Peterson, Darren J.
    Singer, Christine
    Beckham, Gregg T.
    Guss, Adam M.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [13] Engineered Pseudomonas putida simultaneously catabolizes five major components of corn stover lignocellulose: Glucose, xylose, arabinose, p-coumaric acid, and acetic acid
    Elmore, Joshua R.
    Dexter, Gara N.
    Salvachua, Davinia
    O'Brien, Marykate
    Klingeman, Dawn M.
    Gorday, Kent
    Michener, Joshua K.
    Peterson, Darren J.
    Beckham, Gregg T.
    Guss, Adam M.
    [J]. METABOLIC ENGINEERING, 2020, 62 : 62 - 71
  • [14] Elmore Joshua R, 2017, Metab Eng Commun, V5, P1, DOI 10.1016/j.meteno.2017.04.001
  • [15] A One Pot, One Step, Precision Cloning Method with High Throughput Capability
    Engler, Carola
    Kandzia, Romy
    Marillonnet, Sylvestre
    [J]. PLOS ONE, 2008, 3 (11):
  • [16] Transcription control engineering and applications in synthetic biology
    Engstrom, Michael D.
    Pfleger, Brian F.
    [J]. SYNTHETIC AND SYSTEMS BIOTECHNOLOGY, 2017, 2 (03) : 176 - 191
  • [17] New Applications for Phage Integrases
    Fogg, Paul C. M.
    Colloms, Sean
    Rosser, Susan
    Stark, Marshall
    Smith, Margaret C. M.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (15) : 2703 - 2716
  • [18] Control of phage Bxb1 excision by a novel recombination directionality factor
    Ghosh, Pallavi
    Wasil, Laura R.
    Hatfull, Graham F.
    [J]. PLOS BIOLOGY, 2006, 4 (06): : 964 - 974
  • [19] Integration site for streptomyces phage φBT1 and development of site-specific integrating vectors
    Gregory, MA
    Till, R
    Smith, MCM
    [J]. JOURNAL OF BACTERIOLOGY, 2003, 185 (17) : 5320 - 5323
  • [20] Phage integrases: Biology and applications
    Groth, AC
    Calos, MP
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2004, 335 (03) : 667 - 678