An Algorithm for Solving Common Points of Convex Minimization Problems with Applications

被引:0
作者
Hanjing, Adisak [1 ]
Pholasa, Nattawut [2 ]
Suantai, Suthep [3 ,4 ]
机构
[1] Rajamangala Univ Technol Isan Surin Campus, Dept Sci & Math, Surin 32000, Thailand
[2] Univ Phayao, Sch Sci, Phayao 56000, Thailand
[3] Chiang Mai Univ, Fac Sci, Data Sci Res Ctr, Dept Math, Chiang Mai 50200, Thailand
[4] Chiang Mai Univ, Fac Sci, Dept Math, Res Grp Math & Appl Math, Chiang Mai 50200, Thailand
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
关键词
Hilbert space; forward-backward algorithm; convergence theorems; convex minimization problems; fixed point; FORWARD-BACKWARD ALGORITHM; THRESHOLDING ALGORITHM; CONVERGENCE; MAPPINGS;
D O I
10.3390/sym15010007
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In algorithm development, symmetry plays a vital part in managing optimization problems in scientific models. The aim of this work is to propose a new accelerated method for finding a common point of convex minimization problems and then use the fixed point of the forward-backward operator to explain and analyze a weak convergence result of the proposed algorithm in real Hilbert spaces under certain conditions. As applications, we demonstrate the suggested method for solving image inpainting and image restoration problems.
引用
收藏
页数:14
相关论文
共 26 条
[1]   MULTI-STEP ITERATIVE ALGORITHM FOR MINIMIZATION AND FIXED POINT PROBLEMS IN P-UNIFORMLY CONVEX METRIC SPACES [J].
Aremu, Kazeem Olalekan ;
Izuchukwu, Chinedu ;
Ogwo, Grace Nnenanya ;
Mewomo, Oluwatosin Temitope .
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 17 (04) :2161-2180
[2]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]  
Bertsekas D., 1989, Parallel and distributed computation: numerical methods
[5]   Inertial Douglas-Rachford splitting for monotone inclusion problems [J].
Bot, Radu Ioan ;
Csetnek, Ernoe Robert ;
Hendrich, Christopher .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :472-487
[6]  
Burachik R.S., 2007, SPRINGER SER OPTIM A
[7]  
Bussaban L, 2020, CARPATHIAN J MATH, V36, P35
[8]   A SINGULAR VALUE THRESHOLDING ALGORITHM FOR MATRIX COMPLETION [J].
Cai, Jian-Feng ;
Candes, Emmanuel J. ;
Shen, Zuowei .
SIAM JOURNAL ON OPTIMIZATION, 2010, 20 (04) :1956-1982
[9]   A Douglas-Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery [J].
Combettes, Patrick L. ;
Pesquet, Jean-Christophe .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :564-574
[10]   Signal recovery by proximal forward-backward splitting [J].
Combettes, PL ;
Wajs, VR .
MULTISCALE MODELING & SIMULATION, 2005, 4 (04) :1168-1200