Foliar application of silicon-based nanoparticles improve the adaptability of maize (Zea mays L.) in cadmium contaminated soils

被引:31
|
作者
Ahmed, Sarfraz [1 ]
Iqbal, Muhammad [1 ]
Ahmad, Zahoor [2 ]
Iqbal, Muhammad Aamir [3 ]
Artyszak, Arkadiusz [4 ]
Sabagh, Ayman E. L. [5 ,6 ]
Alharby, Hesham F. [7 ,8 ]
Hossain, Akbar [9 ]
机构
[1] Univ Okara, Dept Bot, Okara 56300, Punjab, Pakistan
[2] Univ Cent Punjab, Constituent Coll, Dept Bot, Bahawalpur 63100, Pakistan
[3] Univ Poonch Rawalakot, Dept Agron, Poonch Rawalakot, Pakistan
[4] Warsaw Univ Life Sci SGGW, Dept Agron, Warsaw, Poland
[5] Kafrelsheikh Univ, Fac Agr, Dept Agron, Kafr El Shaikh, Egypt
[6] Siirt Univ, Fac Agr, Dept Field Crops, Siirt, Turkiye
[7] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah 21589, Saudi Arabia
[8] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Plant Biol Res Grp, Jeddah 21589, Saudi Arabia
[9] Bangladesh Wheat & Maize Res Inst, Soil Sci Div, Dinajpur 5200, Bangladesh
关键词
Heavy metal tolerance; Morphology; Leaf Pigments; Biochemical; Antioxidants; Nano-silicon; Maize; PHOSPHORUS; WHEAT; RICE;
D O I
10.1007/s11356-023-25189-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Heavy metals (HMs) especially cadmium (Cd) absorbed by the roots of crop plants like maize have emerged as one of the most serious threats by causing stunted plant growth along with disturbing the photosynthetic machinery and nutrient homeostasis process. A trial was conducted for inducing Cd stress tolerance in maize by exogenous application of silicon nanoparticles (SiNPs) using five doses of SiNPs (0, 100, 200, 300, and 400 ppm) and three levels of Cd (0, 15, and 30 ppm) for maize hybrid (SF-9515). The response variables included morphological traits and biochemical parameters of maize. The results indicated that Cd level of 30 ppm remained the most drastic for maize plants by recording the minimum traits such as shoot length (39.35 cm), shoot fresh weight (9.52 g) and shoot dry weight (3.20 g), leaf pigments such as chlorophyll a (0.55 mg/g FW), chlorophyll b (0.27 mg/g FW), total contents (0.84 mg/g FW), and carotenoid contents (0.19 mu g/g FW). Additionally, the same Cd level disrupted biochemical traits such as TSP (4.85 mg/g FW), TP (252.94 nmol/g FW), TSAA (18.92 mu mol g(-1) FW), TSS (0.85 mg/g FW), and antioxidant activities such as POD (99.39 min(-1) g(-1) FW), CAT (81.58 min(-1) g(-1) FW), APX (2.04 min(-1) g(-1) FW), and SOD (172.79 min(-1) g(-1) FW). However, a higher level of Cd resulted in greater root length (87.63 cm), root fresh weight (16.43 g), and root dry weight (6.14 g) along with higher Cd concentration in the root (2.52 mu g/g(-1)) and shoot (0.48 mu g/g(-1)). The silicon nanoparticles (Si NPs) treatment significantly increased all measured attributes of maize. The highest value was noted of all the parameters such as chlorophyll a (0.91 mg/g FW), chlorophyll b (0.57 mg/g FW), total chlorophyll contents (1.48 mg/g FW), total carotenoid contents (0.40 mu g/g FW), TSP (6.12 mg/g FW), TP (384.56 nmol/g FW), TSAA (24.64 mu mol g(-1) FW), TSS (1.87 mg/g FW), POD (166.10 min(-1) g(-1) FW), CAT (149.54 min(-1) g(-1) FW), APX (3.49 min(-1) g(-1) FW), and SOD (225.57 min(-1) g(-1) FW). Based on recorded findings, it might be inferred that higher levels of Cd tend to drastically reduce morpho-physiological traits of maize and foliage-applied silver nanoparticles hold the potential to ameliorate the adverse effect of Cd stress on maize.
引用
收藏
页码:41002 / 41013
页数:12
相关论文
共 50 条
  • [21] Foliar application of selenium nanoparticles alleviates cadmium toxicity in maize (Zea mays L.) seedlings: Evidence on antioxidant, gene expression, and metabolomics analysis
    Wang, Min
    Mu, Chunyi
    Li, Yuliang
    Wang, Yixuan
    Ma, Wenyan
    Ge, Chenghao
    Cheng, Cheng
    Shi, Gaoling
    Li, Hongbo
    Zhou, Dongmei
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 899
  • [22] Synthesis, characterization and application of silicon and titanium nanoparticles to enhance the early development of maize (Zea mays L.)
    de Almeida Jr, Joao Henrique Vieira
    Esper Neto, Michel
    Brignoli, Fernando Marcos
    Silva, Monique
    Verginio, Ana Clara
    Zaia, Dimas Augusto Morozin
    Arieira, Claudia Regina Dias
    Inoue, Tadeu Takeyoshi
    Batista, Marcelo Augusto
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2024, 70 (01) : 1 - 21
  • [23] Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.)
    Zhang H.
    Dang Z.
    Zheng L.C.
    Yi X.Y.
    International Journal of Environmental Science & Technology, 2009, 6 (2): : 249 - 258
  • [24] Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.)
    Zhang, H.
    Dang, Z.
    Zheng, L. C.
    Yi, X. Y.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2009, 6 (02) : 249 - 258
  • [25] Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review
    Rizwan, Muhammad
    Ali, Shafaqat
    Qayyum, Muhammad Farooq
    Ok, Yong Sik
    Zia-ur-Rehman, Muhammad
    Abbas, Zaheer
    Hannan, Fakhir
    ENVIRONMENTAL GEOCHEMISTRY AND HEALTH, 2017, 39 (02) : 259 - 277
  • [26] RESPONSE MAIZE CULTIVARS (Zea mays L) TO FOLIAR APPLICATION OF KINETIN
    Al-Issawi, Nibras R.
    Abood, Nihad M.
    IRAQI JOURNAL OF AGRICULTURAL SCIENCES, 2024, 55 (01): : 494 - 504
  • [27] Response of maize (Zea mays L.) to various modes and levels of silicon application
    Nieuwenhuis, P
    Lales, JS
    PHILIPPINE AGRICULTURAL SCIENTIST, 2001, 84 (04): : 397 - 400
  • [28] Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review
    Muhammad Rizwan
    Shafaqat Ali
    Muhammad Farooq Qayyum
    Yong Sik Ok
    Muhammad Zia-ur-Rehman
    Zaheer Abbas
    Fakhir Hannan
    Environmental Geochemistry and Health, 2017, 39 : 259 - 277
  • [29] Insights of nano-NPK foliar application on growth and yield of maize ( Zea mays L.)
    Kumar, K. G. Sanjeev
    Parasuraman, P.
    Kannan, P.
    Manivannan, V
    Senthil, A.
    PLANT SCIENCE TODAY, 2024, 11
  • [30] EFFECT OF NITROGEN FERTILIZATION AND FOLIAR APPLICATION OF ZINC IN GROWTH AND YIELD OF MAIZE (ZEA MAYS L.)
    Huthily, Kadhim H.
    Al-Dogagy, Kefah A.
    Kalaf, Muhamed A.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2020, 16 : 1375 - 1380