ON NONCRITICAL GALOIS REPRESENTATIONS

被引:0
作者
Xie, Bingyong [1 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Galois representations; L-invariants; ADIC L-FUNCTIONS; HILBERT MODULAR-FORMS; COHOMOLOGY;
D O I
10.1017/S1474748021000268
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a conjecture that the Galois representation attached to every Hilbert modular form is noncritical and prove it under certain conditions. Under the same condition we prove Chida, Mok and Park's conjecture that Fontaine-Mazur L-invariant and Teitelbaum-type L-invariant coincide with each other.
引用
收藏
页码:383 / 420
页数:38
相关论文
共 29 条
[1]  
BOUTOT JF, 1991, ASTERISQUE, P45
[2]  
CARAYOL H, 1986, ANN SCI ECOLE NORM S, V19, P409
[3]  
CARAYOL H, 1986, COMPOS MATH, V59, P151
[4]   On Teitelbaum type L-invariants of Hilbert modular forms attached to definite quaternions [J].
Chida, Masataka ;
Mok, Chung Pang ;
Park, Jeehoon .
JOURNAL OF NUMBER THEORY, 2015, 147 :633-665
[5]   DILOGARITHMS, REGULATORS AND P-ADIC L-FUNCTIONS [J].
COLEMAN, RF .
INVENTIONES MATHEMATICAE, 1982, 69 (02) :171-208
[6]  
Coleman R, 2010, ASTERISQUE, P179
[7]  
Colmez P., 2005, Algebra and number theory, P193
[8]  
Deligne P., 1979, AUTOMORPHIC FORMS RE, P247
[9]  
DESHALIT E, 1990, ISRAEL J MATH, V71, P1
[10]  
DESHALIT E, 1989, J REINE ANGEW MATH, V400, P3