Measure data elliptic problems with generalized Orlicz growth

被引:7
作者
Chlebicka, Iwona [1 ]
机构
[1] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
Capacity; elliptic PDEs; measure data problems; Musielak-Orlicz spaces; Orlicz-Sobolev spaces; very weak solutions; RIGHT-HAND SIDE; RENORMALIZED SOLUTIONS; PARABOLIC EQUATIONS; VARIABLE EXPONENTS; ENTROPY SOLUTIONS; SOBOLEV SPACES; EXISTENCE; REGULARITY; FUNCTIONALS; UNIQUENESS;
D O I
10.1017/prm.2022.6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study nonlinear measure data elliptic problems involving the operator of generalized Orlicz growth. Our framework embraces reflexive Orlicz spaces, as well as natural variants of variable exponent and double-phase spaces. Approximable and renormalized solutions are proven to exist and coincide for arbitrary measure datum and to be unique when for a class of data being diffuse with respect to a relevant nonstandard capacity. A capacitary characterization of diffuse measures is provided.
引用
收藏
页码:588 / 618
页数:31
相关论文
共 71 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]  
Adams D., 1996, FUNCTION SPACES POTE
[3]   Existence and uniqueness of solutions of unilateral problems in Orlicz spaces [J].
Aharouch, L. ;
Bennouna, J. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (9-10) :3553-3565
[4]   Gossez's approximation theorems in Musielak-Orlicz-Sobolev spaces [J].
Ahmida, Youssef ;
Chlebicka, Iwona ;
Gwiazda, Piotr ;
Youssfi, Ahmed .
JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (09) :2538-2571
[5]   Fully anisotropic elliptic problems with minimally integrable data [J].
Alberico, Angela ;
Chlebicka, Iwona ;
Cianchi, Andrea ;
Zatorska-Goldstein, Anna .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (06)
[6]  
[Anonymous], 1976, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
[7]  
BALL JM, 1977, ARCH RATION MECH AN, V63, P337, DOI 10.1007/BF00279992
[8]   NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES [J].
Baroni, P. ;
Colombo, M. ;
Mingione, G. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) :347-379
[9]   Riesz potential estimates for a general class of quasilinear equations [J].
Baroni, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :803-846
[10]   Capacities in Generalized Orlicz Spaces [J].
Baruah, Debangana ;
Harjulehto, Petteri ;
Hasto, Peter .
JOURNAL OF FUNCTION SPACES, 2018, 2018