On the Gel'fand Theory for Topological Algebras

被引:0
作者
Oukhouya, Ali [1 ]
机构
[1] Univ Cadi Ayyad Marrakech, ENSA, Marrakech, Morocco
关键词
Topological algebra; Spectrum; Gel'fand transform; Density; Interpolation; Local theorem; Partition of unity; 46H;
D O I
10.1007/s41980-023-00854-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present conditions under which the Gel'fand transform E perpendicular to,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E<^>{\wedge },$$\end{document} of locally m-convex algebra E, is a dense subalgebra of Cc(M(E))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal {C}_{c}(\mathfrak M(E))$$\end{document}. The partition of unity and the local theorem are given for a commutative unital locally m-convex algebra.
引用
收藏
页数:14
相关论文
共 15 条
[1]  
Arens R., 1962, Trans. Am. Math. Soc, V104, P24
[2]   PARTITIONS OF UNITY IN F-ALGEBRAS [J].
BROOKS, RM .
MATHEMATISCHE ANNALEN, 1968, 177 (04) :265-&
[3]  
Fragoulopoulou M, 2005, N-HOLLAND M, V200, P1
[4]  
Gelfand IzrailMoiseevich., 1964, Commutative normed rings
[5]  
Haag R.:., 1996, Local Quantum Physics: Fields, Particles, Algebras, DOI DOI 10.1007/978-3-642-61458-3
[6]   ON GEOMETRIC TOPOLOGICAL-ALGEBRAS [J].
MALLIOS, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 172 (02) :301-322
[7]  
Mallios A., 1986, Topological algebras: selected topics
[8]  
Mallios A., 2005, Sci. Math. Jpn, V61, P105
[9]  
Mallios: A., 2004, Topological algebras and their applications, V341, P79
[10]  
Mallios A., 1998, Geometry of Vector Sheaves, DOI [10.1007/978-94-011-5006-4, DOI 10.1007/978-94-011-5006-4]