Toroidal extended affine Lie algebras and vertex algebras

被引:0
|
作者
Chen, Fulin [1 ]
Li, Haisheng [2 ]
Tan, Shaobin [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Rutgers State Univ, Dept Math Sci, Camden, NJ 08102 USA
关键词
Extended affine Lie algebra; vertex algebra; phi-coordinated module; INTEGRABLE REPRESENTATIONS; OPERATOR-ALGEBRAS;
D O I
10.1142/S0219199724500032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their phi-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vertex algebras to the variant Lie algebras, and establish a canonical connection between modules for toroidal extended affine Lie algebras and phi-coordinated modules for these vertex algebras. Furthermore, by employing some results of Billig, we obtain an explicit realization of a class of irreducible modules for the variant Lie algebras.
引用
收藏
页数:47
相关论文
共 50 条
  • [21] Integrable Representations for Extended Affine Lie Algebras Coordinated by Quantum Tori
    Chen, Fulin
    Tan, Shaobin
    JOURNAL OF LIE THEORY, 2013, 23 (02) : 383 - 405
  • [22] Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    Perse, Ozren
    JAPANESE JOURNAL OF MATHEMATICS, 2017, 12 (02): : 261 - 315
  • [23] Quantum Affine Vertex Algebras Associated to Untwisted Quantum Affinization Algebras
    Kong, Fei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 402 (03) : 2577 - 2625
  • [24] GROUPS OF LIE TYPE, VERTEX ALGEBRAS, AND MODULAR MOONSHINE
    Griess, Robert L., Jr.
    Lam, Ching Hung
    ELECTRONIC RESEARCH ANNOUNCEMENTS IN MATHEMATICAL SCIENCES, 2014, 21 : 167 - 176
  • [25] Simple toroidal vertex algebras and their irreducible modules
    Kong, Fei
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF ALGEBRA, 2015, 440 : 264 - 316
  • [26] Positive Energy Representations of Affine Vertex Algebras
    Futorny, Vyacheslav
    Krizka, Libor
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 383 (02) : 841 - 891
  • [27] Admissible representations of simple affine vertex algebras
    Futorny, Vyacheslav
    Morales, Oscar
    Krizka, Libor
    JOURNAL OF ALGEBRA, 2023, 628 : 22 - 70
  • [28] COMPLETE REDUCIBILITY FOR THE TWISTED AFFINE LIE ALGEBRAS
    Rao, S. Eswara
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (02) : 379 - 385
  • [29] Vertex algebras and vertex poisson algebras
    Li, HS
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2004, 6 (01) : 61 - 110
  • [30] Conformal embeddings of affine vertex algebras in minimal W-algebras II: decompositions
    Dražen Adamović
    Victor G. Kac
    Pierluigi Möseneder Frajria
    Paolo Papi
    Ozren Perše
    Japanese Journal of Mathematics, 2017, 12 : 261 - 315