Molecular dynamics simulation as a promising approach for computational study of liquid crystal-based aptasensors

被引:0
作者
Zahraee, Hamed [1 ,2 ]
Arab, Seyed Shahriar [3 ]
Khoshbin, Zahra [4 ,5 ,6 ,7 ]
Taghdisi, Seyed Mohammad [1 ,2 ]
Abnous, Khalil [4 ,5 ,6 ,7 ]
机构
[1] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Targeted Drug Delivery Res Ctr, Mashhad, Iran
[2] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmaceut Biotechnol, Mashhad, Iran
[3] Univ Calif San Diego, Dept Pediat, San Diego, CA USA
[4] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Pharmaceut Res Ctr, Mashhad, Iran
[5] Mashhad Univ Med Sci, Sch Pharm, Dept Med Chem, Mashhad, Iran
[6] Mashhad Univ Med Sci, Pharmaceut Res Ctr, Sch Pharm, Dept Med Chem, Mashhad, Iran
[7] Mashhad Univ Med Sci, Sch Pharm, Dept Med Chem, Mashhad, Iran
关键词
Aptamer; liquid crystal; biosensor; MD simulation; tobramycin; density; CAPILLARY-ELECTROPHORESIS; RNA MOLECULES; FORCE-FIELD; TOBRAMYCIN; DNA; RECOGNITION; SELECTION; PROTEINS; BINDING; TRANSITIONS;
D O I
10.1080/07391102.2024.2315326
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
As a potent computational methodology, molecular dynamics (MD) simulation provides advantageous knowledge about biological compounds from the molecular viewpoint. In particular, MD simulation gives exact information about aptamer strands, such as the short synthetic oligomers, their orientation, binding sites, folding-unfolding state, and conformational re-arrangement. Also, the effect of the different chemicals and biochemicals as the components of aptamer-based sensors (aptasensors) on the aptamer-target interaction can be investigated by MD simulation. Liquid crystals (LCs) as soft substances with characteristics of both solid anisotropy and liquid fluidity are new candidates for designing label-free aptasensors. To now, diverse aptasensors have been developed experimentally based on the optical anisotropy, fluidity, and long-range orientational order of LCs. Here, we represent a computational model of an LC-based aptasensor through a detailed MD simulation study. The different parameters are defined and studied to achieve a comprehensive understanding of the computational design of the LC-based aptasensor, including the density of LCs, their orientation angle, and lognormal distribution in the absence and presence of aptamer strands, both aptamer and target molecules with various concentrations, and interfering substance. As a case study, the tobramycin antibiotic is considered the target molecule for the computational model of the LC-based aptasensor. Communicated by Ramaswamy H. Sarma
引用
收藏
页数:13
相关论文
共 76 条
  • [1] Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
    Abraham, Mark James
    Murtola, Teemu
    Schulz, Roland
    Páll, Szilárd
    Smith, Jeremy C.
    Hess, Berk
    Lindah, Erik
    [J]. SoftwareX, 2015, 1-2 : 19 - 25
  • [2] Scalable Constant pH Molecular Dynamics in GROMACS
    Aho, Noora
    Buslaev, Pavel
    Jansen, Anton
    Bauer, Paul
    Groenhof, Gerrit
    Hess, Berk
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2022, : 6148 - 6160
  • [3] Wearable Cortisol Aptasensor for Simple and Rapid Real-Time Monitoring
    An, Jai Eun
    Kim, Kyung Ho
    Park, Seon Joo
    Seo, Sung Eun
    Kim, Jinyeong
    Ha, Siyoung
    Bae, Joonwon
    Kwon, Oh Seok
    [J]. ACS SENSORS, 2022, 7 (01) : 99 - 108
  • [4] Advances in surface plasmon resonance-based biosensor technologies for cancer biomarker detection
    Azzouz, Abdelmonaim
    Hejji, Lamia
    Kim, Ki-Hyun
    Kukkar, Deepak
    Souhail, Badredine
    Bhardwaj, Neha
    Brown, Richard J. C.
    Zhang, Wei
    [J]. BIOSENSORS & BIOELECTRONICS, 2022, 197
  • [5] Selection of thrombin-binding aptamers by using computational approach for aptasensor application
    Bini, Alessandra
    Mascini, Marcello
    Mascini, Marco
    Turner, Anthony P. F.
    [J]. BIOSENSORS & BIOELECTRONICS, 2011, 26 (11) : 4411 - 4416
  • [6] Assay Development for Aminoglycosides by HPLC with Direct UV Detection
    Blanchaert, Bart
    Huang, Shengyun
    Wach, Katarzyna
    Adams, Erwin
    Van Schepdael, Ann
    [J]. JOURNAL OF CHROMATOGRAPHIC SCIENCE, 2017, 55 (03) : 197 - 204
  • [7] CHARMM: The Biomolecular Simulation Program
    Brooks, B. R.
    Brooks, C. L., III
    Mackerell, A. D., Jr.
    Nilsson, L.
    Petrella, R. J.
    Roux, B.
    Won, Y.
    Archontis, G.
    Bartels, C.
    Boresch, S.
    Caflisch, A.
    Caves, L.
    Cui, Q.
    Dinner, A. R.
    Feig, M.
    Fischer, S.
    Gao, J.
    Hodoscek, M.
    Im, W.
    Kuczera, K.
    Lazaridis, T.
    Ma, J.
    Ovchinnikov, V.
    Paci, E.
    Pastor, R. W.
    Post, C. B.
    Pu, J. Z.
    Schaefer, M.
    Tidor, B.
    Venable, R. M.
    Woodcock, H. L.
    Wu, X.
    Yang, W.
    York, D. M.
    Karplus, M.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) : 1545 - 1614
  • [8] Canonical sampling through velocity rescaling
    Bussi, Giovanni
    Donadio, Davide
    Parrinello, Michele
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2007, 126 (01)
  • [9] Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules
    Cao Liao-Ran
    Zhang Chun-Yu
    Zhang Ding-Lin
    Chu Hui-Ying
    Zhang Yue-Bin
    Li Guo-Hui
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (07) : 1354 - 1365
  • [10] Exploring ion induced folding of a single-stranded DNA oligomer from molecular simulation studies
    Chakraborty, Kaushik
    Khatua, Prabir
    Bandyopadhyay, Sanjoy
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (23) : 15899 - 15910