Blood-Based Transcriptomic Biomarkers Are Predictive of Neurodegeneration Rather Than Alzheimer's Disease

被引:3
作者
Shvetcov, Artur [1 ,2 ]
Thomson, Shannon [3 ,4 ]
Spathos, Jessica [3 ]
Cho, Ann-Na [5 ]
Wilkins, Heather M. [6 ,7 ,8 ]
Andrews, Shea J. [9 ]
Delerue, Fabien [10 ]
Couttas, Timothy A. [11 ]
Issar, Jasmeen Kaur [12 ,13 ,14 ]
Isik, Finula [3 ,4 ]
Kaur, Simranpreet [15 ,16 ]
Drummond, Eleanor [4 ,17 ]
Dobson-Stone, Carol [4 ,17 ]
Duffy, Shantel L. [18 ]
Rogers, Natasha M. [19 ,20 ,21 ]
Catchpoole, Daniel [22 ,23 ]
Gold, Wendy A. [4 ,12 ,13 ]
Swerdlow, Russell H. [6 ,7 ,8 ,24 ]
Brown, David A. [3 ,21 ,25 ]
Finney, Caitlin A. [3 ,4 ]
机构
[1] Sydney Childrens Hosp Network, Dept Psychol Med, Sydney, NSW 2031, Australia
[2] Univ New South Wales, Sch Clin Med, Fac Med & Hlth, Discipline Psychiat & Mental Hlth, Sydney, NSW 2052, Australia
[3] Westmead Inst Med Res, Neuroinflammat Res Grp, Ctr Immunol & Allergy Res, Sydney, NSW 2145, Australia
[4] Univ Sydney, Sch Med Sci, Fac Med Hlth, Sydney, NSW 2050, Australia
[5] Macquarie Univ, Macquarie Med Sch, Dementia Res Ctr, Fac Med Hlth & Human Sci, Sydney, NSW 2109, Australia
[6] Univ Kansas, Alzheimers Dis Res Ctr, Kansas City, KS 66160 USA
[7] Univ Kansas, Dept Biochem & Mol Biol, Med Ctr, Kansas City, KS 66160 USA
[8] Univ Kansas, Dept Neurol, Med Ctr, Kansas City, KS 66160 USA
[9] Univ Calif San Francisco, Dept Psychiat & Behav Sci, San Francisco, CA 94143 USA
[10] Univ Texas MD Anderson Canc Ctr, Dept Genet, Houston, TX 77030 USA
[11] Univ Sydney, Fac Med & Hlth, Translat Res Collect, Brain & Mind Ctr, Sydney, NSW 2050, Australia
[12] Childrens Hosp Westmead, Childrens Med Res Inst, Mol Neurobiol Res Lab, Kids Res, Westmead, NSW 2145, Australia
[13] Childrens Hosp Westmead, Kids Neurosci Ctr, Kids Res, Westmead, NSW 2145, Australia
[14] Univ Sydney, Sydney Med Sch, Fac Med & Hlth, Sydney, NSW 2050, Australia
[15] Royal Childrens Hosp, Murdoch Childrens Res Inst, Parkville, Vic 3052, Australia
[16] Univ Melbourne, Dept Pediat, Parkville, Vic 3010, Australia
[17] Univ Sydney, Brain & Mind Ctr, Sydney, NSW 2050, Australia
[18] Nepean Blue Mt Local Hlth Dist, Allied Hlth Res & Strateg Partnerships, Nepean, NSW 2750, Australia
[19] Westmead Inst Med Res, Ctr Transplant & Renal Res, Sydney, NSW 2145, Australia
[20] Westmead Hosp, Renal & Transplant Med Unit, Westmead, NSW 2145, Australia
[21] Univ Sydney, Fac Med & Hlth, Westmead Clin Sch, Sydney, NSW 2050, Australia
[22] Childrens Hosp Westmead, Tumor Bank, Kids Res, Westmead, NSW 2145, Australia
[23] Childrens Hosp Westmead, Childrens Canc Res Inst, Westmead, NSW 2145, Australia
[24] Univ Kansas, Dept Mol & Integrat Physiol, Med Ctr, Kansas City, KS 66160 USA
[25] New South Wales Hlth Pathol, Inst Clin Pathol & Med Res, Dept Immunopathol, Sydney, NSW 2145, Australia
关键词
transcriptomics; blood; biomarkers; machine learning; neurodegenerative diseases; Alzheimer's disease; SAMPLE-SIZE; PERFORMANCE; INSIGHTS; MODEL;
D O I
10.3390/ijms241915011
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease (AD) is a growing global health crisis affecting millions and incurring substantial economic costs. However, clinical diagnosis remains challenging, with misdiagnoses and underdiagnoses being prevalent. There is an increased focus on putative, blood-based biomarkers that may be useful for the diagnosis as well as early detection of AD. In the present study, we used an unbiased combination of machine learning and functional network analyses to identify blood gene biomarker candidates in AD. Using supervised machine learning, we also determined whether these candidates were indeed unique to AD or whether they were indicative of other neurodegenerative diseases, such as Parkinson's disease (PD) and amyotrophic lateral sclerosis (ALS). Our analyses showed that genes involved in spliceosome assembly, RNA binding, transcription, protein synthesis, mitoribosomes, and NADH dehydrogenase were the best-performing genes for identifying AD patients relative to cognitively healthy controls. This transcriptomic signature, however, was not unique to AD, and subsequent machine learning showed that this signature could also predict PD and ALS relative to controls without neurodegenerative disease. Combined, our results suggest that mRNA from whole blood can indeed be used to screen for patients with neurodegeneration but may be less effective in diagnosing the specific neurodegenerative disease.
引用
收藏
页数:20
相关论文
共 62 条
[1]   Microglial response promotes neurodegeneration in the Ndufs4 KO mouse model of Leigh syndrome [J].
Aguilar, Kevin ;
Comes, Gemma ;
Canal, Carla ;
Quintana, Albert ;
Sanz, Elisenda ;
Hidalgo, Juan .
GLIA, 2022, 70 (11) :2032-2044
[2]   Overlap between neurodegenerative disorders [J].
Armstrong, RA ;
Lantos, PL ;
Cairns, NJ .
NEUROPATHOLOGY, 2005, 25 (02) :111-124
[3]   Shared mechanisms among neurodegenerative diseases: from genetic factors to gene networks [J].
Arneson, Douglas ;
Zhang, Yong ;
Yang, Xia ;
Narayanan, Manikandan .
JOURNAL OF GENETICS, 2018, 97 (03) :795-806
[4]   An update on blood-based biomarkers for non-Alzheimer neurodegenerative disorders [J].
Ashton, Nicholas J. ;
Hye, Abdul ;
Rajkumar, Anto P. ;
Leuzy, Antoine ;
Snowden, Stuart ;
Suarez-Calvet, Marc ;
Karikari, Thomas K. ;
Scholl, Michael ;
La Joie, Renaud ;
Rabinovici, Gil D. ;
Hoglund, Kina ;
Ballard, Clive ;
Hortobagyi, Tibor ;
Svenningsson, Per ;
Blennow, Kaj ;
Zetterberg, Henrik ;
Aarsland, Dag .
NATURE REVIEWS NEUROLOGY, 2020, 16 (05) :265-284
[5]   Compilation of reported protein changes in the brain in Alzheimer's disease [J].
Askenazi, Manor ;
Kavanagh, Tomas ;
Pires, Geoffrey ;
Ueberheide, Beatrix ;
Wisniewski, Thomas ;
Drummond, Eleanor .
NATURE COMMUNICATIONS, 2023, 14 (01)
[6]   Sex and Gender Differences in Neurodegenerative Diseases: Challenges for Therapeutic Opportunities [J].
Bianco, Annalisa ;
Antonacci, Ylenia ;
Liguori, Maria .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (07)
[7]   Blood transcriptomics of drug-naive sporadic Parkinson's disease patients [J].
Calligaris, Raffaella ;
Banica, Mihaela ;
Roncaglia, Paola ;
Robotti, Elisa ;
Finaurini, Sara ;
Vlachouli, Christina ;
Antonutti, Lucia ;
Iorio, Francesco ;
Carissimo, Annamaria ;
Cattaruzza, Tatiana ;
Ceiner, Andrea ;
Lazarevic, Dejan ;
Cucca, Alberto ;
Pangher, Nicola ;
Marengo, Emilio ;
di Bernardo, Diego ;
Pizzolato, Gilberto ;
Gustincich, Stefano .
BMC GENOMICS, 2015, 16
[8]   The Gene Ontology Resource: 20 years and still GOing strong [J].
Carbon, S. ;
Douglass, E. ;
Dunn, N. ;
Good, B. ;
Harris, N. L. ;
Lewis, S. E. ;
Mungall, C. J. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Hartline, E. ;
Fey, P. ;
Thomas, P. D. ;
Albou, L. P. ;
Ebert, D. ;
Kesling, M. J. ;
Mi, H. ;
Muruganujian, A. ;
Huang, X. ;
Poudel, S. ;
Mushayahama, T. ;
Hu, J. C. ;
LaBonte, S. A. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Fexova, S. ;
Garapati, P. ;
Jones, T. E. M. ;
Marygold, S. J. ;
Millburn, G. H. ;
Rey, A. J. ;
Trovisco, V. ;
dos Santos, G. ;
Emmert, D. B. ;
Falls, K. ;
Zhou, P. ;
Goodman, J. L. ;
Strelets, V. B. ;
Thurmond, J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Acencio, M. L. ;
Kuiper, M. ;
Laegreid, A. ;
Logie, C. ;
Lovering, R. C. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D330-D338
[9]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[10]   Decision Variants for the Automatic Determination of Optimal Feature Subset in RF-RFE [J].
Chen, Qi ;
Meng, Zhaopeng ;
Liu, Xinyi ;
Jin, Qianguo ;
Su, Ran .
GENES, 2018, 9 (06)