ON THE EXISTENCE THEORY OF A TIME-SPACE FRACTIONAL KLEIN-GORDON-SCHRÖDINGER SYSTEM

被引:0
|
作者
Banquet, Carlos [1 ]
Guerra, Nafer [1 ]
Villamizar-Roa, eLDER J. [2 ]
机构
[1] Univ Cordoba, Dept Matemat & Estadist, Monteria, Colombia
[2] Univ Ind Santander, Escuela Matemat, Bucaramanga, Colombia
关键词
fractional Klein-Gordon-Schrodinger equations; local and global solutions; asymptotic stability; GORDON-SCHRODINGER EQUATIONS; NONLINEAR SCHRODINGER; GLOBAL EXISTENCE; WELL-POSEDNESS; CAUCHY-PROBLEM; UNIFORM DECAY; STABILITY;
D O I
10.1216/jie.2023.35.407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze a nonlinear Klein-Gordon-Schrodinger system in Rn x R+, n >= 1, in a space-time fractional setting, considering the time fractional variation in the Caputo sense, and a fractional spatial dispersion. Assuming general polynomial nonlinearities, we prove the existence of local and global mild solutions, as well as the asymptotic stability of global mild solutions, with initial data in a large class of singular spaces, namely, the weak Lp spaces. We also derive the existence of local and global solutions in the same framework for the nonlinear time-space fractional Klein-Gordon equation.
引用
收藏
页码:407 / 426
页数:20
相关论文
共 50 条
  • [1] Global attractor for Klein-Gordon-Schrödinger lattice system
    Fu-qi Yin
    Sheng-fan Zhou
    Chang-ming Yin
    Cui-hui Xiao
    Applied Mathematics and Mechanics, 2007, 28 : 695 - 706
  • [2] A numerical investigation with energy-preservation for nonlinear space-fractional Klein-Gordon-Schrödinger system
    Mohammadi, Soheila
    Fardi, Mojtaba
    Ghasemi, Mehdi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [3] Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations
    M.M. Cavalcanti
    V.N. Domingos Cavalcanti
    Nonlinear Differential Equations and Applications NoDEA, 2000, 7 : 285 - 307
  • [4] Jacobi polynomials method for a coupled system of Hadamard fractional Klein-Gordon-Schrödinger equations
    Heydari, M. H.
    Razzaghi, M.
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 107 : 73 - 86
  • [5] Random attractors for the stochastic damped Klein-Gordon-Schrödinger system
    Xin Zhao
    Yin Li
    Advances in Difference Equations, 2015
  • [6] Stabilizability for Quasilinear Klein-Gordon-Schrödinger System with Variable Coefficients
    Li, Weijia
    Shangguan, Yuqi
    Yan, Weiping
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 202 (02) : 703 - 744
  • [7] Fast conservative numerical algorithm for the coupled fractional Klein-Gordon-Schrödinger equation
    Meng Li
    Chengming Huang
    Yongliang Zhao
    Numerical Algorithms, 2020, 84 : 1081 - 1119
  • [8] Global well-posedness of the fractional Klein-Gordon-Schrödinger system with rough initial data
    ChunYan Huang
    BoLing Guo
    DaiWen Huang
    QiaoXin Li
    Science China Mathematics, 2016, 59 : 1345 - 1366
  • [9] On the regularity of the attractor for a new class of fractional nonlinear Klein-Gordon-Schrödinger systems
    Missaoui, Salah
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2025,
  • [10] Conservative Local Discontinuous Galerkin method for the fractional Klein-Gordon-Schrödinger system with generalized Yukawa interaction
    P. Castillo
    S. Gómez
    Numerical Algorithms, 2020, 84 : 407 - 425