Phenotypic adaptation to temperature in the mosquito vector, Aedes aegypti

被引:22
作者
Dennington, Nina L. [1 ,2 ]
Grossman, Marissa K. [1 ]
Ware-Gilmore, Fhallon [1 ,2 ]
Teeple, Janet L. [1 ]
Johnson, Leah R. [3 ]
Shocket, Marta S. [4 ,5 ]
McGraw, Elizabeth A. [2 ,6 ]
Thomas, Matthew B. [7 ,8 ,9 ]
机构
[1] Penn State Univ, Dept Entomol, University Pk, PA 16801 USA
[2] Penn State Univ, Ctr Infect Dis Dynam, Huck Life Sci, University Pk, PA USA
[3] Virginia Tech, Dept Stat, Blacksburg, VA USA
[4] Univ Florida, Dept Geog, Gainesville, FL USA
[5] Univ Lancaster, Lancaster Environm Ctr, Lancaster, England
[6] Penn State Univ, Dept Biol, University Pk, PA USA
[7] Univ Florida, Dept Entomol & Nematol, Gainesville, FL USA
[8] Univ Florida, Invas Sci Res Inst, Gainesville, FL USA
[9] Univ York, Dept Biol, York, N Yorkshire, England
基金
美国国家科学基金会;
关键词
adaptation; climate change; experimental evolution; temperature; vector-borne disease; RAPID THERMAL ADAPTATION; DROSOPHILA-MELANOGASTER; LOCAL ADAPTATION; CLIMATE-CHANGE; MALARIA TRANSMISSION; STRESS RESISTANCE; GENETIC-VARIATION; SELECTION; TOLERANCE; EVOLUTION;
D O I
10.1111/gcb.17041
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Most models exploring the effects of climate change on mosquito-borne disease ignore thermal adaptation. However, if local adaptation leads to changes in mosquito thermal responses, "one size fits all" models could fail to capture current variation between populations and future adaptive responses to changes in temperature. Here, we assess phenotypic adaptation to temperature in Aedes aegypti, the primary vector of dengue, Zika, and chikungunya viruses. First, to explore whether there is any difference in existing thermal response of mosquitoes between populations, we used a thermal knockdown assay to examine five populations of Ae. aegypti collected from climatically diverse locations in Mexico, together with a long-standing laboratory strain. We identified significant phenotypic variation in thermal tolerance between populations. Next, to explore whether such variation can be generated by differences in temperature, we conducted an experimental passage study by establishing six replicate lines from a single field-derived population of Ae. aegypti from Mexico, maintaining half at 27 degrees C and the other half at 31 degrees C. After 10 generations, we found a significant difference in mosquito performance, with the lines maintained under elevated temperatures showing greater thermal tolerance. Moreover, these differences in thermal tolerance translated to shifts in the thermal performance curves for multiple life-history traits, leading to differences in overall fitness. Together, these novel findings provide compelling evidence that Ae. aegypti populations can and do differ in thermal response, suggesting that simplified thermal performance models might be insufficient for predicting the effects of climate on vector-borne disease transmission.
引用
收藏
页数:13
相关论文
共 87 条
[1]   Temperature adaptation and its impact on the shape of performance curves in Drosophila populations [J].
Alruiz, Jose M. ;
Peralta-Maraver, Ignacio ;
Bozinovic, Francisco ;
Santos, Mauro ;
Rezende, Enrico L. .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2023, 290 (1998)
[2]   A Framework for Elucidating the Temperature Dependence of Fitness [J].
Amarasekare, Priyanga ;
Savage, Van .
AMERICAN NATURALIST, 2012, 179 (02) :178-191
[3]   Sparse evidence for selection on phenotypic plasticity in response to temperature [J].
Arnold, Pieter A. ;
Nicotra, Adrienne B. ;
Kruuk, Loeske E. B. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1768)
[4]   Adaptation through chromosomal inversions in Anopheles [J].
Ayala, Diego ;
Ullastres, Anna ;
Gonzalez, Josefa .
FRONTIERS IN GENETICS, 2014, 5
[5]   The evolution of critical thermal limits of life on Earth [J].
Bennett, Joanne M. ;
Sunday, Jennifer ;
Calosi, Piero ;
Villalobos, Fabricio ;
Martinez, Brezo ;
Molina-Venegas, Rafael ;
Araujo, Miguel B. ;
Algar, Adam C. ;
Clusella-Trullas, Susana ;
Hawkins, Bradford A. ;
Keith, Sally A. ;
Kuehn, Ingolf ;
Rahbek, Carsten ;
Rodriguez, Laura ;
Singer, Alexander ;
Morales-Castilla, Ignacio ;
Olalla-Tarraga, Miguel Angel .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   The genomic signal of local environmental adaptation in Aedes aegypti mosquitoes [J].
Bennett, Kelly L. ;
McMillan, W. Owen ;
Loaiza, Jose R. .
EVOLUTIONARY APPLICATIONS, 2021, 14 (05) :1301-1313
[7]   Thermal behaviour of Anopheles stephensi in response to infection with malaria and fungal entomopathogens [J].
Blanford, Simon ;
Read, Andrew F. ;
Thomas, Matthew B. .
MALARIA JOURNAL, 2009, 8
[8]   Correlated responses to selection for stress resistance and longevity in a laboratory population of Drosophila melanogaster [J].
Bubliy, OA ;
Loeschcke, V .
JOURNAL OF EVOLUTIONARY BIOLOGY, 2005, 18 (04) :789-803
[9]   Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents [J].
Caldwell, Jamie M. ;
LaBeaud, A. Desiree ;
Lambin, Eric F. ;
Stewart-Ibarra, Anna M. ;
Ndenga, Bryson A. ;
Mutuku, Francis M. ;
Krystosik, Amy R. ;
Beltran Ayala, Efrain ;
Anyamba, Assaf ;
Borbor-Cordova, Mercy J. ;
Damoah, Richard ;
Grossi-Soyster, Elysse N. ;
Heras Heras, Froilan ;
Ngugi, Harun N. ;
Ryan, Sadie J. ;
Shah, Melisa M. ;
Sippy, Rachel ;
Mordecai, Erin A. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[10]   Impact of climate change on global malaria distribution [J].
Caminade, Cyril ;
Kovats, Sari ;
Rocklov, Joacim ;
Tompkins, Adrian M. ;
Morse, Andrew P. ;
Colon-Gonzalez, Felipe J. ;
Stenlund, Hans ;
Martens, Pim ;
Lloyd, Simon J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (09) :3286-3291