Multiplier ideals of plane curve singularities via Newton polygons

被引:0
|
作者
Perez, Pedro D. Gonzalez [1 ,2 ]
Villa, Manuel Gonzalez [3 ]
Duran, Carlos R. Guzman [3 ]
Buces, Miguel Robredo [4 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[2] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[3] Ctr Invest Matemat, Guanajuato, Gto, Mexico
[4] UCM, Inst Ciencias Matemat, CSIC, UC3M,UAM, Calle Nicolas Cabrera, Madrid, Spain
关键词
Jumping numbers; multiplier ideals; plane curve singularities; toroidal resolutions; JUMPING NUMBERS; POINCARE-SERIES; VALUATIONS;
D O I
10.1080/00927872.2023.2257799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a description of the multiplier ideals and jumping numbers associated with a plane curve singularity in a smooth surface in terms of Newton polygons. Our approach is inspired by a theorem of Howald about multiplier ideals of Newton non-degenerate hypersurfaces and our results provide a generalization of it to the case of plane curve singularities. We use toroidal embedded resolutions, which can be applied to the case of quasi-ordinary hypersurface singularities.
引用
收藏
页码:1142 / 1162
页数:21
相关论文
共 50 条
  • [21] Lagrangian skeleta and plane curve singularities
    Casals, Roger
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (02)
  • [22] The Newton Polygon of a Rational Plane Curve
    D'Andrea C.
    Sombra M.
    Mathematics in Computer Science, 2010, 4 (1) : 3 - 24
  • [23] COUNTING SINGULARITIES VIA FITTING IDEALS
    Jorge-Perez, V. H.
    Miranda, A. J.
    Saia, M. J.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (06)
  • [24] Multiplier Ideals in Two-Dimensional Local Rings with Rational Singularities
    Alberich-Carraminana, Maria
    Alvarez Montaner, Josep
    Dachs-Cadefau, Ferran
    MICHIGAN MATHEMATICAL JOURNAL, 2016, 65 (02) : 287 - 320
  • [25] Characterization of second type plane foliations using Newton polygons
    Fernandez-Sanchez, Percy
    Garcia Barroso, Evelia R.
    Saravia-Molina, Nancy
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (02): : 103 - 123
  • [26] SINGULARITIES OF THE DUAL CURVE OF A CERTAIN PLANE CURVE IN POSITIVE CHARACTERISTIC
    Komeda, Kosuke
    KODAI MATHEMATICAL JOURNAL, 2021, 44 (01) : 166 - 180
  • [27] Moving Curve Ideals of Rational Plane Parametrizations
    D'Andrea, Carlos
    COMPUTER ALGEBRA AND POLYNOMIALS: APPLICATIONS OF ALGEBRA AND NUMBER THEORY, 2015, 8942 : 30 - 49
  • [28] A bound for the Milnor number of plane curve singularities
    Ploski, Arkadiusz
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (05): : 688 - 693
  • [29] MULTIPLICITY AND LATTICE COHOMOLOGY OF PLANE CURVE SINGULARITIES
    Kubasch, Alexander A.
    Nemethi, Andras
    Schefler, Gergo
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 69 (02): : 191 - 234
  • [30] On the freeness of equisingular deformations of plane curve singularities
    Damon, J
    TOPOLOGY AND ITS APPLICATIONS, 2002, 118 (1-2) : 31 - 43