Multiplier ideals of plane curve singularities via Newton polygons

被引:0
|
作者
Perez, Pedro D. Gonzalez [1 ,2 ]
Villa, Manuel Gonzalez [3 ]
Duran, Carlos R. Guzman [3 ]
Buces, Miguel Robredo [4 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[2] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[3] Ctr Invest Matemat, Guanajuato, Gto, Mexico
[4] UCM, Inst Ciencias Matemat, CSIC, UC3M,UAM, Calle Nicolas Cabrera, Madrid, Spain
关键词
Jumping numbers; multiplier ideals; plane curve singularities; toroidal resolutions; JUMPING NUMBERS; POINCARE-SERIES; VALUATIONS;
D O I
10.1080/00927872.2023.2257799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a description of the multiplier ideals and jumping numbers associated with a plane curve singularity in a smooth surface in terms of Newton polygons. Our approach is inspired by a theorem of Howald about multiplier ideals of Newton non-degenerate hypersurfaces and our results provide a generalization of it to the case of plane curve singularities. We use toroidal embedded resolutions, which can be applied to the case of quasi-ordinary hypersurface singularities.
引用
收藏
页码:1142 / 1162
页数:21
相关论文
共 50 条
  • [11] DAHA and plane curve singularities
    Cherednik, Ivan
    Philipp, Ian
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (01): : 333 - 385
  • [12] Perturbing plane curve singularities
    Casas-Alvero, E
    Peraire, R
    REVISTA MATEMATICA IBEROAMERICANA, 2003, 19 (02) : 307 - 323
  • [13] VOJTA'S CONJECTURE, SINGULARITIES AND MULTIPLIER-TYPE IDEALS
    Yasuda, Takehiko
    KODAI MATHEMATICAL JOURNAL, 2018, 41 (03) : 566 - 578
  • [14] Equisingular calculations for plane curve singularities
    Campillo, Antonio
    Greuel, Gert-Martin
    Lossen, Christoph
    JOURNAL OF SYMBOLIC COMPUTATION, 2007, 42 (1-2) : 89 - 114
  • [15] MORSIFICATIONS OF REAL PLANE CURVE SINGULARITIES
    Leviant, Peter
    Shustin, Eugenii
    JOURNAL OF SINGULARITIES, 2018, 18 : 307 - 328
  • [16] MONODROMY GROUP OF PLANE CURVE SINGULARITIES
    WAJNRYB, B
    MATHEMATISCHE ANNALEN, 1980, 246 (02) : 141 - 154
  • [17] A characterization of multiplier ideals via ultraproducts
    Yamaguchi, Tatsuki
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 1153 - 1168
  • [18] Lagrangian skeleta and plane curve singularities
    Roger Casals
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [19] Multiplier ideals via Mather discrepancy
    Ein, Lawrence
    Ishii, Shihoko
    Mustata, Mircea
    MINIMAL MODELS AND EXTREME RAYS (KYOTO, 2011), 2016, 70 : 9 - 28
  • [20] EQUISINGULAR DEFORMATIONS OF PLANE CURVE SINGULARITIES
    NOBILE, A
    ILLINOIS JOURNAL OF MATHEMATICS, 1978, 22 (03) : 476 - 498