Multiplier ideals of plane curve singularities via Newton polygons

被引:0
|
作者
Perez, Pedro D. Gonzalez [1 ,2 ]
Villa, Manuel Gonzalez [3 ]
Duran, Carlos R. Guzman [3 ]
Buces, Miguel Robredo [4 ]
机构
[1] Univ Complutense Madrid, Inst Matemat Interdisciplinar, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[2] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Fac Ciencias Matemat, Plaza Ciencias 3, Madrid 28040, Spain
[3] Ctr Invest Matemat, Guanajuato, Gto, Mexico
[4] UCM, Inst Ciencias Matemat, CSIC, UC3M,UAM, Calle Nicolas Cabrera, Madrid, Spain
关键词
Jumping numbers; multiplier ideals; plane curve singularities; toroidal resolutions; JUMPING NUMBERS; POINCARE-SERIES; VALUATIONS;
D O I
10.1080/00927872.2023.2257799
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a description of the multiplier ideals and jumping numbers associated with a plane curve singularity in a smooth surface in terms of Newton polygons. Our approach is inspired by a theorem of Howald about multiplier ideals of Newton non-degenerate hypersurfaces and our results provide a generalization of it to the case of plane curve singularities. We use toroidal embedded resolutions, which can be applied to the case of quasi-ordinary hypersurface singularities.
引用
收藏
页码:1142 / 1162
页数:21
相关论文
共 50 条