O- and OH-induced dopant segregation in single atom alloy surfaces: A combined density functional theory and machine learning study

被引:7
作者
Hipolito, Anne Nicole P. [1 ]
Palmero, Marianne A. [1 ]
Ordillo, Viejay Z. [1 ,3 ]
Shimizu, Koji [2 ]
Putungan, Darwin B. [1 ]
Santos-Putungan, Alexandra B. [1 ]
Ocon, Joey D. [3 ]
Watanabe, Satoshi [2 ]
Pilario, Karl Ezra S. [3 ]
Padama, Allan Abraham B. [1 ]
机构
[1] Univ Philippines Los Banos, Inst Math Sci & Phys, Coll Arts & Sci, Los Banos 4031, Laguna, Philippines
[2] Univ Tokyo, Dept Mat Engn, 7-3-1 Hongo,Bunkyo ku, Tokyo 1138656, Japan
[3] Univ Philippines Diliman, Coll Engn, Dept Chem Engn, Quezon City 1101, Metro Manila, Philippines
关键词
ORR catalysts; Adsorbate-induced segregation; Single atom alloys; Density functional theory; Machine learning; OXYGEN REDUCTION REACTION; CATALYSTS; ENERGIES; DFT; NI; PD;
D O I
10.1016/j.commatsci.2023.112607
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, we identified the significant factors affecting adsorbate-induced segregation in single-atom alloy (SAA) surfaces by performing Density Functional Theory (DFT)-based calculations and machine learning (ML) methods. We used O and OH species, which are key reactants in oxygen reduction reactions (ORR), as test adsorbates. We constructed SAA surfaces using different transition metals (Ag, Au, Co, Cu, Ir, Ni, Pd, Pt, and Rh) and calculated their segregation energies with and without the adsorbates to predict the segregation tendency of the dopant atom. We examined a total of 44 features which comprised of the elemental, energetics, and electronic properties of the SAAs. We employed a two-stage feature selection to reduce the number of features to the most important features for model training. We found that the formation energies, metallic radius difference, the d-band centers of the dopant in the surface and subsurface layer, the difference in surface energy between the host and dopant atoms, and the difference in the total number of d-electrons between the host and dopant atoms influence the segregation energy of the dopant induced by O and OH. Using these selected features, we implemented linear regression (LR), support vector machine regression (SVR), Gaussian process regression (GPR), and extra trees regression (ETR) algorithms to predict the segregation energies in the presence of adsorbates. For both O- and OH-SAA systems, SVR models exhibited the best performance for predicting adsorbate-induced segregation energies. Among the surfaces we considered, we determined Rh-Au(1 1 1) as a potential catalyst for ORR based on the calculated adsorption energies of O and OH and segregation energies in the presence of these adsorbates.
引用
收藏
页数:9
相关论文
共 44 条
[11]   ROLE OF D-D ELECTRON CORRELATIONS IN COHESION AND FERROMAGNETISM OF TRANSITION-METALS [J].
FRIEDEL, J ;
SAYERS, CM .
JOURNAL DE PHYSIQUE, 1977, 38 (06) :697-705
[12]   Catalytic Activity of Single Transition-Metal Atom Doped in Cu(111) Surface for Heterogeneous Hydrogenation [J].
Fu, Qiang ;
Luo, Yi .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (28) :14618-14624
[13]   Reaction Kinetics and Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRAS) Investigation of CO Oxidation over Supported Pd-Au Alloy Catalysts [J].
Gao, Feng ;
Wang, Yilin ;
Goodman, D. Wayne .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (09) :4036-4043
[14]   Extremely randomized trees [J].
Geurts, P ;
Ernst, D ;
Wehenkel, L .
MACHINE LEARNING, 2006, 63 (01) :3-42
[15]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[16]   Chemisorbed atomic oxygen inducing Pd segregation in PdAu(111) alloy: Energetic and electronic DFT analysis [J].
Guesmi, Hazar ;
Louis, Catherine ;
Delannoy, Laurent .
CHEMICAL PHYSICS LETTERS, 2011, 503 (1-3) :97-100
[17]   Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J].
Hammer, B ;
Hansen, LB ;
Norskov, JK .
PHYSICAL REVIEW B, 1999, 59 (11) :7413-7421
[18]   Single-atom alloy catalysts designed by first-principles calculations and artificial intelligence [J].
Han, Zhong-Kang ;
Sarker, Debalaya ;
Ouyang, Runhai ;
Mazheika, Aliaksei ;
Gao, Yi ;
Levchenko, Sergey V. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[19]   Single-Atom Alloy Catalysis [J].
Hannagan, Ryan T. ;
Giannakakis, Georgios ;
Flytzani-Stephanopoulos, Maria ;
Sykes, E. Charles H. .
CHEMICAL REVIEWS, 2020, 120 (21) :12044-12088
[20]   Predicting thermodynamic stability of magnesium alloys in machine learning [J].
He, Xi ;
Liu, Jinde ;
Yang, Chen ;
Jiang, Gang .
COMPUTATIONAL MATERIALS SCIENCE, 2023, 223