The commutator of the Bergman projection on strongly pseudoconvex domains with minimal smoothness
被引:1
作者:
Hu, Bingyang
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Math, 150 Univ Ave, W Lafayette, IN 47907 USAPurdue Univ, Dept Math, 150 Univ Ave, W Lafayette, IN 47907 USA
Hu, Bingyang
[1
]
Huo, Zhenghui
论文数: 0引用数: 0
h-index: 0
机构:
Duke Kunshan Univ, Zu Chongzhi Ctr Math & Comp Sci, Div Nat & Appl Sci, 8 Duke Ave, Kunshan, Jiangsu, Peoples R ChinaPurdue Univ, Dept Math, 150 Univ Ave, W Lafayette, IN 47907 USA
Huo, Zhenghui
[2
]
Lanzani, Loredana
论文数: 0引用数: 0
h-index: 0
机构:
Syracuse Univ, Dept Math, Syracuse, NY USA
Univ Bologna, Dipartimento Matemat, Bologna, ItalyPurdue Univ, Dept Math, 150 Univ Ave, W Lafayette, IN 47907 USA
Lanzani, Loredana
[3
,4
]
Palencia, Kevin
论文数: 0引用数: 0
h-index: 0
机构:
Northern Illinois Univ, Dept Math Sci, 1425 W Lincoln Hwy, De Kalb, IL 60115 USAPurdue Univ, Dept Math, 150 Univ Ave, W Lafayette, IN 47907 USA
Palencia, Kevin
[5
]
Wagner, Nathan A.
论文数: 0引用数: 0
h-index: 0
机构:
Brown Univ, Dept Math, 151 Thayer St, Providence, RI 02912 USAPurdue Univ, Dept Math, 150 Univ Ave, W Lafayette, IN 47907 USA
Wagner, Nathan A.
[6
]
机构:
[1] Purdue Univ, Dept Math, 150 Univ Ave, W Lafayette, IN 47907 USA
[2] Duke Kunshan Univ, Zu Chongzhi Ctr Math & Comp Sci, Div Nat & Appl Sci, 8 Duke Ave, Kunshan, Jiangsu, Peoples R China
[3] Syracuse Univ, Dept Math, Syracuse, NY USA
[4] Univ Bologna, Dipartimento Matemat, Bologna, Italy
[5] Northern Illinois Univ, Dept Math Sci, 1425 W Lincoln Hwy, De Kalb, IL 60115 USA
[6] Brown Univ, Dept Math, 151 Thayer St, Providence, RI 02912 USA
Consider a bounded, strongly pseudoconvex domain D subset of C-n with minimal smoothness (namely, the class C-2) and let b be a locally integrable function on D. We characterize boundedness (resp., compactness) in L-p(D), p>1, of the commutator [b,P] of the Bergman projection P in terms of an appropriate bounded (resp. vanishing) mean oscillation requirement on b. We also establish the equivalence of such notion of BMO (resp., VMO) with other BMO and VMO spaces given in the literature. Our proofs use a dyadic analog of the Berezin transform and holomorphic integral representations going back (for smooth domains) to N. Kerzman & E. M. Stein, and E. Ligocka.(c) 2023 Elsevier Inc. All rights reserved.