MCWESRGAN: Improving Enhanced Super-Resolution Generative Adversarial Network for Satellite Images

被引:4
|
作者
Karwowska, Kinga [1 ]
Wierzbicki, Damian [1 ]
机构
[1] Mil Univ Technol, Fac Civil Engn & Geodesy, Dept Imagery Intelligence, PL-00908 Warsaw, Poland
关键词
Spatial resolution; Training; Generators; Superresolution; Generative adversarial networks; Satellite images; Computational modeling; Convolutional neural networks; deep learning; enhanced super-resolution generative adversarial network (ESRGAN); neural networks; power spectral density (PSD); single-image super-resolution (SISR); super resolution (SR); RESOLUTION;
D O I
10.1109/JSTARS.2023.3322642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the dynamic technological development, we are witnessing a major progress in solutions that allow for the observation of Earth's surface. Small satellites have a significant drawback. Due to their limitations, the installed optic systems are not perfect. As a result, the quality of the obtained images is lower, including lower resolution, although the satellites move on the Low Earth Orbit. In the case of images lacking a high-resolution counterpart, the spatial resolution of the imagery can be improved using single-image super-resolution algorithms. In this article, we present an SISR solution based on a new network called MCWESRGAN, which is a modification of the popular ESRGAN network. We propose a novel strategy that introduces a multi-column discriminator model. The generator model is trained using Wasserstein loss. The introduced modifications enable a tenfold reduction in the training time of the network. The proposed algorithm is verified using images obtained from space, aerial imagery, and the Dataset for Object deTection in Aerial Images (DOTA) database. A set of evaluation methods for super-resolution (SR) images is proposed to verify the results. These evaluation methods indicate areas that are poorly estimated by the algorithm. Furthermore, as part of the conducted experiments, an absolute assessment method for interpretational potential based on the power spectral density of the image (PSD) is proposed, allowing for determining the magnitude of interpretational improvement after applying resolution enhancement algorithms. The conducted research demonstrates that we achieve better qualitative and quantitative results than classical ESRGAN methods and other state-of-the-art (SOTA) approaches.
引用
收藏
页码:9886 / 9906
页数:21
相关论文
共 50 条
  • [41] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [42] Mars image super-resolution based on generative adversarial network
    Wang, Cong
    Zhang, Yin
    Zhang, Yongqiang
    Tian, Rui
    Ding, Mingli
    Zhang, Yongqiang (yongqiang.zhang.hit@gmail.com); Ding, Mingli (mingli.ding.hit@gmail.com), 1600, Institute of Electrical and Electronics Engineers Inc. (09): : 108889 - 108898
  • [43] Computational Integral Imaging Reconstruction Based on Generative Adversarial Network Super-Resolution
    Wu, Wei
    Wang, Shigang
    Chen, Wanzhong
    Qi, Zexin
    Zhao, Yan
    Zhong, Cheng
    Chen, Yuxin
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [44] MedSRGAN: medical images super-resolution using generative adversarial networks
    Gu, Yuchong
    Zeng, Zitao
    Chen, Haibin
    Wei, Jun
    Zhang, Yaqin
    Chen, Binghui
    Li, Yingqin
    Qin, Yujuan
    Xie, Qing
    Jiang, Zhuoren
    Lu, Yao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (29-30) : 21815 - 21840
  • [45] Vision-based displacement measurement enhanced by super-resolution using generative adversarial networks
    Sun, Chujin
    Gu, Donglian
    Zhang, Yi
    Lu, Xinzheng
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (10)
  • [46] Image Reconstruction Algorithm Based on Improved Super-Resolution Generative Adversarial Network
    Zha Tibo
    Luo Lin
    Yang Kai
    Zhang Yu
    Li Jinlong
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (08)
  • [47] MedSRGAN: medical images super-resolution using generative adversarial networks
    Yuchong Gu
    Zitao Zeng
    Haibin Chen
    Jun Wei
    Yaqin Zhang
    Binghui Chen
    Yingqin Li
    Yujuan Qin
    Qing Xie
    Zhuoren Jiang
    Yao Lu
    Multimedia Tools and Applications, 2020, 79 : 21815 - 21840
  • [48] A new generative adversarial network for medical images super resolution
    Ahmad, Waqar
    Ali, Hazrat
    Shah, Zubair
    Azmat, Shoaib
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [49] A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images
    Zhao, Ming
    Wei, Yang
    Wong, Kelvin K. L.
    MAGNETIC RESONANCE IMAGING, 2022, 85 : 153 - 160
  • [50] Super-Resolution Reconstruction of Remote Sensing Images of the China-Myanmar Pipeline Based on Generative Adversarial Network
    Jiang, Yuanliang
    Ren, Qingying
    Ren, Yuan
    Liu, Haipeng
    Dong, Shaohua
    Ma, Yundong
    SUSTAINABILITY, 2023, 15 (17)