On the Forsythe conjecture

被引:0
作者
Faber, Vance
Liesen, Joerg [1 ]
Tichy, Petr [2 ]
机构
[1] TU Berlin, Inst Math, Str 17 Juni 136, D-10623 Berlin, Germany
[2] Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 18675, Czech Republic
关键词
Forsythe conjecture; CG method; Steepest descent method; Arnoldi projection; Krylov subspace methods; CYCLE-CONVERGENCE; RESTARTED GMRES; POLYNOMIALS; ALGORITHM; MATRICES; BEHAVIOR;
D O I
10.1007/s10543-023-00991-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Forsythe formulated a conjecture about the asymptotic behavior of the restarted conjugate gradient method in 1968. We translate several of his results into modern terms, and pose an analogous version of the conjecture (originally formulated only for symmetric positive definite matrices) for symmetric and nonsymmetric matrices. Our version of the conjecture uses a two-sided or cross iteration with the given matrix and its transpose, which is based on the projection process used in the Arnoldi (or for symmetric matrices the Lanczos) algorithm. We prove several new results about the limiting behavior of this iteration, but the conjecture still remains largely open. We hope that our paper motivates further research that eventually leads to a proof of the conjecture.
引用
收藏
页数:27
相关论文
共 27 条
[1]  
Afanasjew M, 2007, ELECTRON T NUMER ANA, V28, P206
[4]   A technique for accelerating the convergence of restarted GMRES [J].
Baker, AH ;
Jessup, ER ;
Manteuffel, T .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (04) :962-984
[5]   PROPERTIES OF WORST-CASE GMRES [J].
Faber, Vance ;
Liesen, Joerg ;
Tichy, Petr .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2013, 34 (04) :1500-1519
[6]   ON CHEBYSHEV POLYNOMIALS OF MATRICES [J].
Faber, Vance ;
Liesen, Joerg ;
Tichy, Petr .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) :2205-2221
[7]  
Forsythe GE., 1968, NUMER MATH, V11, P57, DOI [DOI 10.1007/BF02165472, 10.1007/BF02165472]
[8]   On the steepest descent algorithm for quadratic functions [J].
Gonzaga, Clovis C. ;
Schneider, Ruana M. .
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 63 (02) :523-542
[9]   GMRES/CR AND ARNOLDI-LANCZOS AS MATRIX APPROXIMATION-PROBLEMS [J].
GREENBAUM, A ;
TREFETHEN, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :359-368
[10]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436